The research of the molecular mechanisms of endothelial dysfunction in vitro

2019 ◽  
Vol XIV (1) ◽  
Author(s):  
R.E. Kalinin ◽  
I.A. Suchkov ◽  
N.V. Korotkova ◽  
N.D. Mzhavanadze
Author(s):  
Liping Su ◽  
Xiaocen Kong ◽  
Sze Jie Loo ◽  
Yu Gao ◽  
Jean-Paul Kovalik ◽  
...  

Induced pluripotent stem cells derived cells (iPSCs) not only can be used for personalized cell transfer therapy, but also can be used for modeling diseases for drug screening and discovery in vitro. Although prior studies have characterized the function of rodent iPSCs derived endothelial cells (ECs) in diabetes or metabolic syndrome, feature phenotypes are largely unknown in hiPSC-ECs from patients with diabetes. Here, we used hiPSC lines from patients with type 2 diabetes mellitus (T2DM) and differentiated them into ECs (dia-hiPSC-ECs). We found that dia-hiPSC-ECs had disrupted glycine homeostasis, increased senescence, and impaired mitochondrial function and angiogenic potential as compared with healthy hiPSC-ECs. These signature phenotypes will be helpful to establish dia-hiPSC-ECs as models of endothelial dysfunction for understanding molecular mechanisms of disease and for identifying and testing new targets for the treatment of endothelial dysfunction in diabetes.


2008 ◽  
Vol 56 (5) ◽  
pp. 752-769 ◽  
Author(s):  
Erik R. Kline ◽  
Roy L. Sutliff

Since the emergence of highly active antiretroviral therapy (HAART), human immunodeficiency virus-1 (HIV-1)-infected patients have demonstrated dramatic decreases in viral burden and opportunistic infections, and an overall increase in life expectancy. Despite these positive HAART-associated outcomes, it has become increasingly clear that HIV-1 patients have an enhanced risk of developing cardiovascular disease over time. Clinical studies are instrumental in our understanding of vascular dysfunction in the context of HIV-1 infection. However, most clinical studies often do not distinguish whether HIV-1 proteins, HAART, or a combination of these 2 factors cause cardiovascular complications. This review seeks to address the roles of both HIV-1 proteins and antiretroviral drugs in the development of endothelial dysfunction because endothelial dysfunction is the hallmark initial step of many cardiovascular diseases. We analyze recentin vitroandin vivostudies examining endothelial toxicity in response to HIV-1 proteins or in response to the various classes of antiretroviral drugs. Furthermore, we discuss the multiple mechanisms by which HIV-1 proteins and HAART injure the vascular endothelium in HIV-1 patients. By understanding the molecular mechanisms of HIV-1 protein- and antiretroviral-induced cardiovascular disease, we may ultimately improve the quality of life of HIV-1 patients through better drug design and the discovery of new pharmacological targets.


2020 ◽  
Author(s):  
Ying Jiang ◽  
Hong Zhu ◽  
Hong Chen ◽  
Meng-Meng Yang ◽  
Yi-Chen Yu ◽  
...  

Abstract Background: The cardiovascular dysfunction in children born after in vitro fertilization (IVF) has been of great concern, in our study, we aim to explore potential molecular mechanisms for such long-term outcomes.Methods:Real-time qPCR was used to test long non-coding RNA MEG3 and endothelium-derived factors such as endothelial nitric oxide synthase (eNOS), endothelin-1(ET1), and vascular endothelial growth factor (VEGF). ELISA was used to determinate levels of the first and second oxidation products of NO (nitrite, nitrate), ET1 and VEGF. Primary HUVECs collected after caesarean section were treated with different estradiol concentrations in vitro. Additionally, knockdown of MEG3 on HUVEC provided further evidence between MEG3 expression and alteration of NO, ET1, VEGF. Then, by using pyrosequencing, we uncovered the methylation status of the MEG3 region.Results: We found that the expression level of MEG3 was higher in human umbilical vein endothelial cells (HUVECs) of IVF offspring than that in spontaneously born offspring. Furthermore, we found decreased expression of eNOS and VEGF along with elevated expression of ET1 in HUVECs from IVF offspring compared to spontaneously born offspring, accompanied by lower secretion of nitrite, VEGF, and higher secretion of ET1 in the umbilical cord serum of IVF offspring. We confirmed the results from in vivo experiments by demonstrating that high estradiol intrauterine environments lead to abnormal expression of MEG3 and endothelium derived factors. Meanwhile, silencing MEG3 expression decreased ET1 expression, and increased nitrite, nitrate, and VEGF secretion, which could account for the effects we observed in vivo. With pyrosequencing technology, we found that elevated expression of MEG3 in IVF offspring derived HUVECs was the result of hypomethylation of the MEG3 promoter.Conclusions: Our results demonstrated that increased expression of MEG3 in IVF-born HUVECs, accompanied by lower secretion of eNOS and VEGF along with higher secretion of ET1, which is closely related with endothelial dysfunction, together provide a potential mechanism addressing high risk of hypertension in IVF offspring.


2020 ◽  
Author(s):  
Zheyi Yan ◽  
Xiaoming Cao ◽  
Chunfang Wang ◽  
Sha Liu ◽  
Lu Gan ◽  
...  

Abstract Background Diabetic retinopathy (DR) is a severe microvasculature complication of diabetes. Restoration of dysfunctional endothelial cells represents a promising approach to treatment of DR. It has been demonstrated that a number of CTRP (C1q/tumor necrosis factor-related protein) members improves vascular endothelial function of the aortic vasculature. However, the role of CTRPs in the treatment of DR remains largely unresolved. Therefore, the aim of this study was to determine whether members of the CTRP family improve diabetes-induced endothelial dysfunction of retinal vasculature, thus exhibiting a protective effect against diabetic injury of retina. Methods The vasoactivity of currently identified murine CTRP family members was assessed in vascular rings and the underlying molecular mechanisms elucidated in human retinal microvascular endothelial cells. We then mimicked diabetic retinopathy both in vitro and in vivo, after which they were treated with CTRP3, and the vasoactivity, apoptotic cell death and vascular leakage in the retina were evaluated. Discovery-drive approaches followed by cause-effect analysis were used to uncover the molecular mechanisms of CTRP3. Results Our results demonstrate that CTRP3, CTRP5, and CTRP9 exert vasorelaxant effects on macro- and micro-vessels, with CTRP3 being the most potent in micro-vessels. The effects of CTRP3 were found to be endothelium-dependent via the AdipoR1/AMPK/eNOS/Nitric Oxide (NO) pathway. In in vitro microvascular reactivity studies, CTRP3 successfully improved high glucose/high lipid-induced impairment of endothelium-dependent vasodilatation. Blockade of either AMPK or eNOS completely abolished the previously observed effects of CTRP3. In addition, in the murine diabetic retinopathy model, CTRP3 treatment increased endothelium-dependent relaxation and NO levels in microvessels, and inhibited apoptotic cell death and vascular leakage in the retina. Finally,blockade of NO synthesis completely abolished the effects of CTRP3 that had been measured previously. Conclusion Taken together, our findings reveal that the AdipoR1/AMPK/eNOS/NO signaling pathway, through which CTRP3 reverses endothelial dysfunction of the microvasculature by normalization of impaired vasodilatation, represents a novel intervention effective against diabetic injury of retina.


2018 ◽  
Vol 95 (11) ◽  
pp. 965-970
Author(s):  
V. I. Podzolkov ◽  
T. A. Safronova ◽  
Dinara U. Natkina

The results of numerous studies of recent decades confirm the crucial role of vascular endothelium in regulating vascular homeostasis. A plethora of recent studies have shed light on the clinical significance of endothelial dysfunction in essential hypertension. Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase inhibitor. At present, it is considered as a generally recognized marker of endothelial dysfunction by most researchers. In vitro experiments showed that ADMA inhibits endothelium-dependent arterial relaxation, increases the level of indicators characterizing the degree of oxidative stress in endothelial cells, enhances the synthesis of the superoxide anion radical by endothelial cells. The molecular mechanisms described above, activated with an increase in the concentration of ADMA, cause various disturbances in the function of the cardiovascular system, which gave grounds to consider the level of ADMA as a criterion and risk factor for the development of cardiovascular diseases. Thus, ADMA plays a key role in the development and progression of CVD associated with a spectrum of diseases and pathological conditions characterized by a disturbance in NO production. Despite clinical and experimental confirmation of the relationship between the increase in ADMA in plasma and the development of cardiovascular events, the unambiguous etiopathogenetic role of ADMA in CVD requires further research. In order to accurately answer the question of whether ADMA is an etiological factor or a biological marker of CVD, additional analysis is needed to study the biochemical, genetic and pharmacological aspects of ADMA metabolism, the results of which are presented in this article.


2007 ◽  
Vol 35 (3) ◽  
pp. 442-445 ◽  
Author(s):  
C.P.D. Wheeler-Jones

Vascular disease is initiated by activation of the endothelium characterized by the predominance of pro-inflammatory and pro-coagulant changes in endothelial cells (ECs) referred to collectively as ‘endothelial dysfunction’. There is increasing evidence that lipoproteins of dietary origin modulate EC function and the use of artificial chylomicron remnant-like particles (CRLPs) in vitro is now beginning to shed light on the molecular mechanisms through which these particles influence cell behaviour. CRLPs enriched in n−6 PUFAs (polyunsaturated fatty acids) influence the production of vasoactive mediators by ECs in a pro-inflammatory manner. Thus CRLPs reduce the synthesis and release of nitric oxide and alter the balance of release of vasodilator versus vasoconstrictor eicosanoids. These changes are accompanied by induction of cyclo-oxygenase-2 expression and activity as well as increased expression of adhesion molecules and the antioxidant defence enzyme haem oxygenase-1. CRLPs also activate a number of intracellular signalling pathways, including NF-κB (nuclear factor κB) and MAPKs (mitogen-activated protein kinases), which may be involved in mediating their effects on gene expression. The effects of CRLPs on EC behaviour can also be modulated by the type of fat/oxidation status of the particles. These findings support the hypothesis that lipoproteins of dietary origin directly regulate molecular events in the vascular wall.


2014 ◽  
Vol 34 (4) ◽  
pp. 790-800 ◽  
Author(s):  
Eiji Horio ◽  
Tsuyoshi Kadomatsu ◽  
Keishi Miyata ◽  
Yasumichi Arai ◽  
Kentaro Hosokawa ◽  
...  

Objective— Cardiovascular disease (CVD), the most common morbidity resulting from atherosclerosis, remains a frequent cause of death. Efforts to develop effective therapeutic strategies have focused on vascular inflammation as a critical pathology driving atherosclerosis progression. Nonetheless, molecular mechanisms underlying this activity remain unclear. Here, we ask whether angiopoietin-like protein 2 (Angptl2), a proinflammatory protein, contributes to vascular inflammation that promotes atherosclerosis progression. Approach and Results— Histological analysis revealed abundant Angptl2 expression in endothelial cells and macrophages infiltrating atheromatous plaques in patients with cardiovascular disease. Angptl2 knockout in apolipoprotein E–deficient mice ( ApoE −/− / Angptl2 −/− ) attenuated atherosclerosis progression by decreasing the number of macrophages infiltrating atheromatous plaques, reducing vascular inflammation. Bone marrow transplantation experiments showed that Angptl2 deficiency in endothelial cells attenuated atherosclerosis development. Conversely, ApoE −/− mice crossed with transgenic mice expressing Angptl2 driven by the Tie2 promoter ( ApoE −/− /Tie2- Angptl2 Tg), which drives Angptl2 expression in endothelial cells but not monocytes/macrophages, showed accelerated plaque formation and vascular inflammation because of increased numbers of infiltrated macrophages in atheromatous plaques. Tie2- Angptl2 Tg mice alone did not develop plaques but exhibited endothelium-dependent vasodilatory dysfunction, likely because of decreased production of endothelial cell–derived nitric oxide. Conversely, Angptl2 −/− mice exhibited less severe endothelial dysfunction than did wild-type mice when fed a high-fat diet. In vitro, Angptl2 activated proinflammatory nuclear factor-κB signaling in endothelial cells and increased monocyte/macrophage chemotaxis. Conclusions— Endothelial cell–derived Angptl2 accelerates vascular inflammation by activating proinflammatory signaling in endothelial cells and increasing macrophage infiltration, leading to endothelial dysfunction and atherosclerosis progression.


Author(s):  
D. P. Bazett-Jones ◽  
M. J. Hendzel

Structural analysis of combinations of nucleosomes and transcription factors on promoter and enhancer elements is necessary in order to understand the molecular mechanisms responsible for the regulation of transcription initiation. Such complexes are often not amenable to study by high resolution crystallographic techniques. We have been applying electron spectroscopic imaging (ESI) to specific problems in molecular biology related to transcription regulation. There are several advantages that this technique offers in studies of nucleoprotein complexes. First, an intermediate level of spatial resolution can be achieved because heavy atom contrast agents are not necessary. Second, mass and stoichiometric relationships of protein and nucleic acid can be estimated by phosphorus detection, an element in much higher proportions in nucleic acid than protein. Third, wrapping or bending of the DNA by the protein constituents can be observed by phosphorus mapping of the complexes. Even when ESI is used with high exposure of electrons to the specimen, important macromolecular information may be provided. For example, an image of the TATA binding protein (TBP) bound to DNA is shown in the Figure (top panel). It can be seen that the protein distorts the DNA away from itself and much of its mass sits off the DNA helix axis. Moreover, phosphorus and mass estimates demonstrate whether one or two TBP molecules interact with this particular promoter TATA sequence.


VASA ◽  
2005 ◽  
Vol 34 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Brunner-La Rocca ◽  
Schindler ◽  
Schlumpf ◽  
Saller ◽  
Suter

Background: Previous studies showed an anti-atherosclerotic effect of PADMA 28, an herbal formula based on Tibetan medicine. As the mechanisms of action are not fully understood, we investigated whether PADMA 28 may lower blood lipids and lipid oxidisability, and affect early endothelial dysfunction. Patients and methods: Sixty otherwise healthy subjects with total cholesterol ≥5.2 mmol/l and < 8.0 mmol/l were randomly assigned to placebo or PADMA 28, 3 x 2 capsules daily, for 4 weeks (double-blind). Blood lipids (total, LDL-, and HDL-cholesterol, triglycerides, Apo-lipoprotein A1 and B) and ex vivo lipid oxidisability were measured before and after treatment. In a subset of 24 subjects, endothelial function was assessed using venous occlusion plethysmography with intraarterial infusion of acetylcholine. Isolated LDL and plasma both untreated and pre-treated with PADMA 28 extract were oxidised by the radical generator AAPH. Conjugated diene formation was measured at 245 nm. Results: Blood lipids did not change during the study in both groups. In contrast to previous reports in mild hypercholesterolaemia, no endothelial dysfunction was seen and, consequently, was not influenced by therapy. Ex vivo blood lipid oxidisability was significantly reduced with PADMA 28 (area under curve: 5.29 ± 1.62 to 4.99 ± 1.46, p = 0.01), and remained unchanged in the placebo group (5.33 ± 1.88 to 5.18 ± 1.78, p > 0.1). This effect persisted one week after cessation of medication. In vitro experiments confirmed the prevention of lipid peroxidation in the presence of PADMA 28 extracts. Persistent protection was also seen for LDL isolated from PADMA 28-pretreated blood after being subjected to rigorous purification. Conclusions: This study suggests that the inhibition of blood lipid oxidisability by PADMA 28 may play a role in its anti-atherosclerotic effect.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1278-1285
Author(s):  
Mohamed Yafout ◽  
Amine Ousaid ◽  
Ibrahim Sbai El Otmani ◽  
Youssef Khayati ◽  
Amal Ait Haj Said

The new SARS-CoV-2 belonging to the coronaviruses family has caused a pandemic affecting millions of people around the world. This pandemic has been declared by the World Health Organization as an international public health emergency. Although several clinical trials involving a large number of drugs are currently underway, no treatment protocol for COVID-19 has been officially approved so far. Here we demonstrate through a search in the scientific literature that the traditional Moroccan pharmacopoeia, which includes more than 500 medicinal plants, is a fascinating and promising source for the research of natural molecules active against SARS-CoV-2. Multiple in-silico and in-vitro studies showed that some of the medicinal plants used by Moroccans for centuries possess inhibitory activity against SARS-CoV or SARS-CoV-2. These inhibitory activities are achieved through the different molecular mechanisms of virus penetration and replication, or indirectly through stimulation of immunity. Thus, the potential of plants, plant extracts and molecules derived from plants that are traditionally used in Morocco and have activity against SARS-CoV-2, could be explored in the search for a preventive or curative treatment against COVID-19. Furthermore, safe plants or plant extracts that are proven to stimulate immunity could be officially recommended by governments as nutritional supplements.


Sign in / Sign up

Export Citation Format

Share Document