scholarly journals Smy1p, a Kinesin-related Protein That Does Not Require Microtubules

1998 ◽  
Vol 140 (4) ◽  
pp. 873-883 ◽  
Author(s):  
S.H. Lillie ◽  
S.S. Brown

Abstract. We have previously reported that a defect in Myo2p, a myosin in budding yeast (Saccharomyces cerevisiae), can be partially corrected by overexpression of Smy1p, which is by sequence a kinesin-related protein (Lillie, S.H., and S.S. Brown. 1992. Nature. 356:358– 361). Such a functional link between putative actin- and microtubule-based motors is surprising, so here we have tested the prediction that Smy1p indeed acts as a microtubule-based motor. Unexpectedly, we found that abolition of microtubules by nocodazole does not interfere with the ability of Smy1p to correct the mutant Myo2p defect, nor does it interfere with the ability of Smy1p to localize properly. In addition, other perturbations of microtubules, such as treatment with benomyl or introduction of tubulin mutations, do not exacerbate the Myo2p defect. Furthermore, a mutation in SMY1 strongly predicted to destroy motor activity does not destroy Smy1p function. We have also observed a genetic interaction between SMY1 and two of the late SEC mutations, sec2 and sec4. This indicates that Smy1p can play a role even when Myo2p is wild type, and that Smy1p acts at a specific step of the late secretory pathway. We conclude that Smy1p does not act as a microtubule-based motor to localize properly or to compensate for defective Myo2p, but that it must instead act in some novel way.

2005 ◽  
Vol 69 (4) ◽  
pp. 565-584 ◽  
Author(s):  
Aaron M. Neiman

SUMMARY Sporulation of the baker's yeast Saccharomyces cerevisiae is a response to nutrient depletion that allows a single diploid cell to give rise to four stress-resistant haploid spores. The formation of these spores requires a coordinated reorganization of cellular architecture. The construction of the spores can be broadly divided into two phases. The first is the generation of new membrane compartments within the cell cytoplasm that ultimately give rise to the spore plasma membranes. Proper assembly and growth of these membranes require modification of aspects of the constitutive secretory pathway and cytoskeleton by sporulation-specific functions. In the second phase, each immature spore becomes surrounded by a multilaminar spore wall that provides resistance to environmental stresses. This review focuses on our current understanding of the cellular rearrangements and the genes required in each of these phases to give rise to a wild-type spore.


2001 ◽  
Vol 114 (12) ◽  
pp. 2231-2239 ◽  
Author(s):  
Alain Rambourg ◽  
Catherine L. Jackson ◽  
Yves Clermont

The structural elements of the secretory pathway in the budding yeast Saccharomyces cerevisiae were analyzed by 3D stereo-electron microscopy using relatively thick sections in which membranes were selectively impregnated. In a wild-type strain, tubular networks of various sizes and staining properties were distributed throughout the cytoplasm. As a rule, wide-meshed, lightly stained polygonal networks were connected to more or less fenestrated sheets of endoplasmic reticulum (ER). Some of these networks were continuous with more intensely stained networks and narrower meshes that displayed at their intersections nodular dilations that progressively increased in size and staining properties to reach those of secretion granules. Such networks presumably corresponded to Golgi elements. Indeed, stacked cisternae typical of the mammalian Golgi apparatus are rarely found in wild-type cells. However, if it is assumed that the Golgi apparatus plays a key role in the segregation and maturation of secretion granules, then tubular networks with nodular dilations should be equivalent to parts of this organelle. In correlation with the increase in size and density of the nodules there was a decrease in diameter and staining intensity of the interconnecting tubules. These results parallel observations on the formation of secretory granules in mammalian cells and suggest that the segregation of secretory material is concomitant with the progressive perforation and tubulization of previously unperforated sheets. When the sec21-3 thermosensitive mutant was examined at the nonpermissive temperature (37°C), the secretory pathway was blocked at exit from the ER, which started to accumulate as clusters of narrow, anastomosed, unperforated ribbon-like elements. When the block was released by shifting down to permissive temperature (24°C), tubular networks of various sizes and caliber, presumably Golgi in nature, formed as soon as 5 minutes after release of the block. At later time intervals, granules of various sizes and densities appeared to be released by rupture of these tubular networks or even to form at the edges of ER fenestrae. These observations support a dynamic maturation process in which the formation of secretion granules occurs by means of an oriented series of membrane transformations starting at the ER and culminating with the liberation of secretion granules from Golgi networks.


1995 ◽  
Vol 308 (3) ◽  
pp. 847-851 ◽  
Author(s):  
D Urban-Grimal ◽  
B Pinson ◽  
J Chevallier ◽  
R Haguenauer-Tsapis

The co-transport of uracil and protons through the plasma membrane of the yeast Saccharomyces cerevisiae is mediated by a specific permease encoded by the FUR4 gene. The uracil permease is a multi-spanning membrane protein that follows the secretory pathway to the plasma membrane. Recent experimental data led to the proposal of a two-dimensional model of its topology. A spontaneous mutant corresponding to the substitution of Lys-272 by glutamic acid was obtained. The influence of this mutation was studied by comparing the wild-type and mutant permeases produced in a strain carrying a chromosomal deletion of the FUR4 gene. The mutant permease is correctly targeted to the plasma membrane and its stability is similar to that of the wild-type permease. The uptake parameters for the mutant permease were impaired and showed an approximately 65-fold increase of apparent K(m) and a decrease in apparent Vmax. Equilibrium binding measurements with enriched plasma membrane preparations showed an approximately 70-fold increase in apparent Kd in the mutant, whereas its Bmax. was similar to that of the wild type. Lys-272 is fully conserved in the uracil permease family and is predicted to lie in the fourth transmembrane segment of the protein. It seems to be essential for both efficient uracil binding and translocation.


Genetics ◽  
1989 ◽  
Vol 123 (1) ◽  
pp. 81-95 ◽  
Author(s):  
E J Louis ◽  
J E Haber

Abstract The presence of the tRNA ochre suppressors SUP11 and SUP5 is found to induce meiosis I nondisjunction in the yeast Saccharomyces cerevisiae. The induction increases with increasing dosage of the suppressor and decreases in the presence of an antisuppressor. The effect is independent of the chromosomal location of SUP11. Each of five different chromosomes monitored exhibited nondisjunction at frequencies of 0.1%-1.1% of random spores, which is a 16-160-fold increase over wild-type levels. Increased nondisjunction is reflected by a marked increase in tetrads with two and zero viable spores. In the case of chromosome III, for which a 50-cM map interval was monitored, the resulting disomes are all in the parental nonrecombinant configuration. Recombination along chromosome III appears normal both in meioses that have no nondisjunction and in meioses for which there was nondisjunction of another chromosome. We propose that a proportion of one or more proteins involved in chromosome pairing, recombination or segregation are aberrant due to translational read-through of the normal ochre stop codon. Hygromycin B, an antibiotic that can suppress nonsense mutations via translational read-through, also induces nonrecombinant meiosis I nondisjunction. Increases in mistranslation, therefore, increase the production of aneuploids during meiosis. There was no observable effect of SUP11 on mitotic chromosome nondisjunction; however some disomes caused SUP11 ade2-ochre strains to appear white or red, instead of pink.


2002 ◽  
Vol 22 (20) ◽  
pp. 6946-6948 ◽  
Author(s):  
Joanna Kamińska ◽  
Beata Gajewska ◽  
Anita K. Hopper ◽  
Teresa ˙Zołądek

ABSTRACT Rsp5p is an ubiquitin-protein ligase of Saccharomyces cerevisiae that has been implicated in numerous processes including transcription, mitochondrial inheritance, and endocytosis. Rsp5p functions at multiple steps of endocytosis, including ubiquitination of substrates and other undefined steps. We propose that one of the roles of Rsp5p in endocytosis involves maintenance and remodeling of the actin cytoskeleton. We report the following. (i) There are genetic interactions between rsp5 and several mutant genes encoding actin cytoskeletal proteins. rsp5 arp2, rsp5 end3, and rsp5 sla2 double mutants all show synthetic growth defects. Overexpressed wild-type RSP5 or mutant rsp5 genes with lesions of some WW domains suppress growth defects of arp2 and end3 cells. The defects in endocytosis, actin cytoskeleton, and morphology of arp2 are also suppressed. (ii) Rsp5p and Sla2p colocalize in abnormal F-actin-containing clumps in arp2 and pan1 mutants. Immunoprecipitation experiments confirmed that Rsp5p and Act1p colocalize in pan1 mutants. (iii) Rsp5p and Sla2p coimmunoprecipitate and partially colocalize to punctate structures in wild-type cells. These studies provide the first evidence for an interaction of an actin cytoskeleton protein with Rsp5p. (iv) rsp5-w1 mutants are resistant to latrunculin A, a drug that sequesters actin monomers and depolymerizes actin filaments, consistent with the fact that Rsp5p is involved in actin cytoskeleton dynamics.


1995 ◽  
Vol 130 (3) ◽  
pp. 687-700 ◽  
Author(s):  
E Yeh ◽  
R V Skibbens ◽  
J W Cheng ◽  
E D Salmon ◽  
K Bloom

We have used time-lapse digital- and video-enhanced differential interference contrast (DE-DIC, VE-DIC) microscopy to study the role of dynein in spindle and nuclear dynamics in the yeast Saccharomyces cerevisiae. The real-time analysis reveals six stages in the spindle cycle. Anaphase B onset appears marked by a rapid phase of spindle elongation, simultaneous with nuclear migration into the daughter cell. The onset and kinetics of rapid spindle elongation are identical in wild type and dynein mutants. In the absence of dynein the nucleus does not migrate as close to the neck as in wild-type cells and initial spindle elongation is confined primarily to the mother cell. Rapid oscillations of the elongating spindle between the mother and bud are observed in wild-type cells, followed by a slower growth phase until the spindle reaches its maximal length. This stage is protracted in the dynein mutants and devoid of oscillatory motion. Thus dynein is required for rapid penetration of the nucleus into the bud and anaphase B spindle dynamics. Genetic analysis reveals that in the absence of a functional central spindle (ndcl), dynein is essential for chromosome movement into the bud. Immunofluorescent localization of dynein-beta-galactosidase fusion proteins reveals that dynein is associated with spindle pole bodies and the cell cortex: with spindle pole body localization dependent on intact microtubules. A kinetic analysis of nuclear movement also revealed that cytokinesis is delayed until nuclear translocation is completed, indicative of a surveillance pathway monitoring nuclear transit into the bud.


1993 ◽  
Vol 13 (8) ◽  
pp. 5010-5019 ◽  
Author(s):  
J Heitman ◽  
A Koller ◽  
J Kunz ◽  
R Henriquez ◽  
A Schmidt ◽  
...  

The immunosuppressants cyclosporin A, FK506, and rapamycin inhibit growth of unicellular eukaryotic microorganisms and also block activation of T lymphocytes from multicellular eukaryotes. In vitro, these compounds bind and inhibit two different types of peptidyl-prolyl cis-trans isomerases. Cyclosporin A binds cyclophilins, whereas FK506 and rapamycin bind FK506-binding proteins (FKBPs). Cyclophilins and FKBPs are ubiquitous, abundant, and targeted to multiple cellular compartments, and they may fold proteins in vivo. Previously, a 12-kDa cytoplasmic FKBP was shown to be only one of at least two FK506-sensitive targets in the yeast Saccharomyces cerevisiae. We find that a second FK506-sensitive target is required for amino acid import. Amino acid-auxotrophic yeast strains (trp1 his4 leu2) are FK506 sensitive, whereas prototrophic strains (TRP1 his4 leu2, trp1 HIS4 leu2, and trp1 his4 LEU2) are FK506 resistant. Amino acids added exogenously to the growth medium mitigate FK506 toxicity. FK506 induces GCN4 expression, which is normally induced by amino acid starvation. FK506 inhibits transport of tryptophan, histidine, and leucine into yeast cells. Lastly, several genes encoding proteins involved in amino acid import or biosynthesis confer FK506 resistance. These findings demonstrate that FK506 inhibits amino acid import in yeast cells, most likely by inhibiting amino acid transporters. Amino acid transporters are integral membrane proteins which import extracellular amino acids and constitute a protein family sharing 30 to 35% identity, including eight invariant prolines. Thus, the second FK506-sensitive target in yeast cells may be a proline isomerase that plays a role in folding amino acid transporters during transit through the secretory pathway.


1996 ◽  
Vol 16 (4) ◽  
pp. 1805-1812 ◽  
Author(s):  
J Zhu ◽  
R H Schiestl

Chromosome aberrations may cause cancer and many heritable diseases. Topoisomerase I has been suspected of causing chromosome aberrations by mediating illegitimate recombination. The effects of deletion and of overexpression of the topoisomerase I gene on illegitimate recombination in the yeast Saccharomyces cerevisiae have been studied. Yeast transformations were carried out with DNA fragments that did not have any homology to the genomic DNA. The frequency of illegitimate integration was 6- to 12-fold increased in a strain overexpressing topoisomerase I compared with that in isogenic control strains. Hot spot sequences [(G/C)(A/T)T] for illegitimate integration target sites accounted for the majority of the additional events after overexpression of topoisomerase I. These hot spot sequences correspond to sequences previously identified in vitro as topoisomerase I preferred cleavage sequences in other organisms. Furthermore, such hot spot sequences were found in 44% of the integration events present in the TOP1 wild-type strain and at a significantly lower frequency in the top1delta strain. Our results provide in vivo evidence that a general eukaryotic topoisomerase I enzyme nicks DNA and ligates nonhomologous ends, leading to illegitimate recombination.


1978 ◽  
Vol 24 (6) ◽  
pp. 637-642 ◽  
Author(s):  
K. C. Thomas ◽  
Mary Spencer

Effects of the carbon source and oxygen on ethylene production by the yeast Saccharomyces cerevisiae have been studied. The amounts of ethylene evolved by the yeast culture were less than those detected in the blank (an equal volume of uninoculated medium), suggesting a net absorption of ethylene by the yeast cells. Addition of glucose to the lactate-grown yeast culture induced ethylene production. This glucose-induced stimulation of ethylene production was inhibited to a great extent by cycloheximide. Results suggested that the yeast cells in the presence of glucose synthesized an ethylene precursor and passed it into the medium. The conversion of this precursor to ethylene might be stimulated by oxygen. The fact that ethylene was produced by the yeast growing anaerobically and also by respiration-deficient mutants isolated from the wild-type yeast suggested that mitochondrial ATP synthesis was not an absolute requirement for ethylene biogenesis.


Genetics ◽  
1989 ◽  
Vol 122 (3) ◽  
pp. 535-542 ◽  
Author(s):  
B A Kunz ◽  
M G Peters ◽  
S E Kohalmi ◽  
J D Armstrong ◽  
M Glattke ◽  
...  

Abstract Defects in the RAD52 gene of the yeast Saccharomyces cerevisiae confer a mutator phenotype. To characterize this effect in detail, a collection of 238 spontaneous SUP4-o mutations arising in a strain having a disrupted RAD52 gene was analyzed by DNA sequencing. The resulting mutational spectrum was compared to that derived from an examination of 222 spontaneous mutations selected in a nearisogenic wild-type (RAD52) strain. This comparison revealed that the mutator phenotype was associated with an increase in the frequency of base-pair substitutions. All possible types of substitution were detected but there was a reduction in the relative fraction of A.T----G.C transitions and an increase in the proportion of G.C----C.G transversions. These changes were sufficient to cause a twofold greater preference for substitutions at G.C sites in the rad52 strain despite a decrease in the fraction of G.C----T.A transversions. There were also considerable differences between the distributions of substitutions within the SUP4-o gene. Base-pair changes occurred at fewer sites in the rad52 strain but the mutated sites included several that were not detected in the RAD52 background. Only two of the four sites that were mutated most frequently in the rad52 strain were also prominent in the wild-type strain and mutation frequencies at almost all sites common to both strains were greater for the rad52 derivative. Although single base-pair deletions occurred in the two strains with similar frequencies, several classes of mutation that were recovered in the wild-type background including multiple base-pair deletions, insertions of the yeast transposable element Ty, and more complex changes, were not detected in the rad52 strain.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document