scholarly journals Folding of Insulin Receptor Monomers Is Facilitated by the Molecular Chaperones Calnexin and Calreticulin and Impaired by Rapid Dimerization

1998 ◽  
Vol 141 (3) ◽  
pp. 637-646 ◽  
Author(s):  
Joseph Bass ◽  
Gavin Chiu ◽  
Yair Argon ◽  
Donald F. Steiner

Many complex membrane proteins undergo subunit folding and assembly in the ER before transport to the cell surface. Receptors for insulin and insulin-like growth factor I, both integral membrane proteins and members of the family of receptor tyrosine kinases (RTKs), are unusual in that they require homodimerization before export from the ER. To better understand chaperone mechanisms in endogenous membrane protein assembly in living cells, we have examined the folding, assembly, and transport of the human insulin receptor (HIR), a dimeric RTK. Using pulse-chase labeling and nonreducing SDS-PAGE analysis, we have explored the molecular basis of several sequential maturation steps during receptor biosynthesis. Under normal growth conditions, newly synthesized receptor monomers undergo disulfide bond formation while associated with the homologous chaperones calnexin (Cnx) and calreticulin (Crt). An inhibitor of glucose trimming, castanospermine (CST), abolished binding to Cnx/Crt but also unexpectedly accelerated receptor homodimerization resulting in misfolded oligomeric proreceptors whose processing was delayed and cell surface expression was also decreased by ∼30%. Prematurely-dimerized receptors were retained in the ER and more avidly associated with the heat shock protein of 70 kD homologue binding protein. In CST-treated cells, receptor misfolding followed disordered oligomerization. Together, these studies demonstrate a chaperone function for Cnx/Crt in HIR folding in vivo and also provide evidence that folding efficiency and homodimerization are counterbalanced.

2016 ◽  
Vol 113 (45) ◽  
pp. 12780-12785 ◽  
Author(s):  
Andrey S. Dobroff ◽  
Sara D’Angelo ◽  
Bedrich L. Eckhardt ◽  
Fortunato Ferrara ◽  
Daniela I. Staquicini ◽  
...  

Inflammatory breast carcinoma (IBC) is one of the most lethal forms of human breast cancer, and effective treatment for IBC is an unmet clinical need in contemporary oncology. Tumor-targeted theranostic approaches are emerging in precision medicine, but only a few specific biomarkers are available. Here we report up-regulation of the 78-kDa glucose-regulated protein (GRP78) in two independent discovery and validation sets of specimens derived from IBC patients, suggesting translational promise for clinical applications. We show that a GRP78-binding motif displayed on either bacteriophage or adeno-associated virus/phage (AAVP) particles or loop-grafted onto a human antibody fragment specifically targets orthotopic IBC and other aggressive breast cancer models in vivo. To evaluate the theranostic value, we used GRP78-targeting AAVP particles to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) transgene, obtaining simultaneous in vivo diagnosis through PET imaging and tumor treatment by selective activation of the prodrug ganciclovir at tumor sites. Translation of this AAVP system is expected simultaneously to image, monitor, and treat the IBC phenotype and possibly other aggressive (e.g., invasive and/or metastatic) subtypes of breast cancer, based on the inducible cell-surface expression of the stress-response chaperone GRP78, and possibily other cell-surface receptors in human tumors.


Blood ◽  
2011 ◽  
Vol 117 (10) ◽  
pp. 2874-2882 ◽  
Author(s):  
Karine Crozat ◽  
Céline Eidenschenk ◽  
Baptiste N. Jaeger ◽  
Philippe Krebs ◽  
Sophie Guia ◽  
...  

Abstract Natural killer (NK) cells are innate immune cells that express members of the leukocyte β2 integrin family in humans and mice. These CD11/CD18 heterodimers play critical roles in leukocyte trafficking, immune synapse formation, and costimulation. The cell-surface expression of one of these integrins, CD11b/CD18, is also recognized as a major marker of mouse NK-cell maturation, but its function on NK cells has been largely ignored. Using N-ethyl-N-nitrosourea (ENU) mutagenesis, we generated a mouse carrying an A → T transverse mutation in the Itgb2 gene, resulting in a mutation that prevented the cell-surface expression of CD18 and its associated CD11a, CD11b, and CD11c proteins. We show that β2 integrin–deficient NK cells have a hyporesponsive phenotype in vitro, and present an alteration of their in vivo developmental program characterized by a selective accumulation of c-kit+ cells. NK-cell missing-self recognition was partially altered in vivo, whereas the early immune response to mouse cytomegalovirus (MCMV) infection occurred normally in CD18-deficient mice. Therefore, β2 integrins are required for optimal NK-cell maturation, but this deficiency is partial and can be bypassed during MCMV infection, highlighting the robustness of antiviral protective responses.


2007 ◽  
Vol 82 (4) ◽  
pp. 1884-1898 ◽  
Author(s):  
Ruth Case ◽  
Emma Sharp ◽  
Tau Benned-Jensen ◽  
Mette M. Rosenkilde ◽  
Nicholas Davis-Poynter ◽  
...  

ABSTRACT The murine cytomegalovirus (MCMV) M33 gene is conserved among all betaherpesviruses and encodes a homologue of seven-transmembrane receptors (7TMR) with the capacity for constitutive signaling. Previous studies have demonstrated that M33 is important for MCMV dissemination to or replication within the salivary glands. In this study, we probed N- and C-terminal regions of M33 as well as known 7TMR signature motifs in transmembrane (TM) II and TM III to determine the impact on cell surface expression, constitutive signaling, and in vivo phenotype. The region between amino acids R340 and A353 of the C terminus was found to be important for CREB- and NFAT-mediated signaling, although not essential for phosphatidylinositol turnover. Tagging or truncation of the N terminus of M33 resulted in loss of cell surface expression. Within TM II, an F79D mutation abolished constitutive signaling, demonstrating a role, as in other cellular and viral 7TMR, of TM II in receptor activation. In TM III, the arginine (but not the asparagine) residue of the NRY motif (the counterpart of the common DRY motif in cellular 7TMR) was found to be essential for constitutive signaling. Selected mutations incorporated into recombinant MCMV showed that disruption of constitutive signaling for a viral 7TMR homologue resulted in a reduced capacity to disseminate to or replicate in the salivary glands. In addition, HCMV UL33 was found to partially compensate for the lack of M33 in vivo, suggesting conserved biological roles of the UL33 gene family.


2010 ◽  
Vol 84 (21) ◽  
pp. 11245-11254 ◽  
Author(s):  
Brian C. DeHaven ◽  
Natasha M. Girgis ◽  
Yuhong Xiao ◽  
Paul N. Hudson ◽  
Victoria A. Olson ◽  
...  

ABSTRACT The vaccinia virus (VACV) complement control protein (VCP) is an immunomodulatory protein that is both secreted from and expressed on the surface of infected cells. Surface expression of VCP occurs though an interaction with the viral transmembrane protein A56 and is dependent on a free N-terminal cysteine of VCP. Although A56 and VCP have been shown to interact in infected cells, the mechanism remains unclear. To investigate if A56 is sufficient for surface expression, we transiently expressed VCP and A56 in eukaryotic cell lines and found that they interact on the cell surface in the absence of other viral proteins. Since A56 contains three extracellular cysteines, we hypothesized that one of the cysteines may be unpaired and could therefore form a disulfide bridge with VCP. To test this, we generated a series of A56 mutants in which each cysteine was mutated to a serine, and we found that mutation of cysteine 162 abrogated VCP cell surface expression. We also tested the ability of other poxvirus complement control proteins to bind to VACV A56. While the smallpox homolog of VCP is able to bind VACV A56, the ectromelia virus (ECTV) VCP homolog is only able to bind the ECTV homolog of A56, indicating that these proteins may have coevolved. Surface expression of poxvirus complement control proteins may have important implications in viral pathogenesis, as a virus that does not express cell surface VCP is attenuated in vivo. This suggests that surface expression of VCP may contribute to poxvirus pathogenesis.


AIDS ◽  
2008 ◽  
Vol 22 (3) ◽  
pp. 430-432 ◽  
Author(s):  
Yea-Lih Lin ◽  
Clément Mettling ◽  
Pierre Portalès ◽  
Régine Rouzier ◽  
Jacques Clot ◽  
...  

2008 ◽  
Vol 295 (1) ◽  
pp. G16-G26 ◽  
Author(s):  
Mubeen Jafri ◽  
Bryan Donnelly ◽  
Steven Allen ◽  
Alex Bondoc ◽  
Monica McNeal ◽  
...  

Inoculation of BALB/c mice with rhesus rotavirus (RRV) in the newborn period results in biliary epithelial cell (cholangiocyte) infection and the murine model of biliary atresia. Rotavirus infection of a cell requires attachment, which is governed in part by cell-surface expression of integrins such as α2β1. We hypothesized that cholangiocytes were susceptible to RRV infection because they express α2β1. RRV attachment and replication was measured in cell lines derived from cholangiocytes and hepatocytes. Flow cytometry was performed on these cell lines to determine whether α2β1 was present. Cholangiocytes were blocked with natural ligands, a monoclonal antibody, or small interfering RNA against the α2-subunit and were infected with RRV. The extrahepatic biliary tract of newborn mice was screened for the expression of the α2β1-integrin. Newborn mice were pretreated with a monoclonal antibody against the α2-subunit and were inoculated with RRV. RRV attached and replicated significantly better in cholangiocytes than in hepatocytes. Cholangiocytes, but not hepatocytes, expressed α2β1 in vitro and in vivo. Blocking assays led to a significant reduction in attachment and yield of virus in RRV-infected cholangiocytes. Pretreatment of newborn pups with an anti-α2 monoclonal antibody reduced the ability of RRV to cause biliary atresia in mice. Cell-surface expression of the α2β1-integrin plays a role in the mechanism that confers cholangiocyte susceptibility to RRV infection.


1996 ◽  
Vol 133 (1) ◽  
pp. 159-167 ◽  
Author(s):  
A Saada ◽  
F Reichert ◽  
S Rotshenker

Peripheral nerve injury is followed by Wallerian degeneration which is characterized by cellular and molecular events that turn the degenerating nerve into a tissue that supports nerve regeneration. One of these is the removal, by phagocytosis, of myelin that contains molecules which inhibit regeneration. We have recently documented that the scavenger macrophage and Schwann cells express the galactose-specific lectin MAC-2 which is significant to myelin phagocytosis. In the present study we provide evidence for a mechanism leading to the augmented expression of cell surface MAC-2. Nerve lesion causes noneuronal cells, primarily fibroblasts, to produce the cytokine granulocyte macrophage-colony stimulating factor (GM-CSF). In turn, GM-CSF induces Schwann cells and macrophages to up-regulate surface expression of MAC-2. The proposed mechanism is based on the following novel observations. GM-CSF mRNA was detected by PCR in in vitro and in vivo degenerating nerves, but not in intact nerves. The GM-CSF molecule was detected by ELISA in medium conditioned by in vitro and in vivo degenerating peripheral nerves as of the 4th h after injury. GM-CSF activity was demonstrated by two independent bioassays, and repressed by activity blocking antibodies. Significant levels of GM-CSF were produced by nerve derived fibroblasts, but neither by Schwann cells nor by nerve derived macrophages. Mouse rGM-CSF enhanced MAC-2 production in nerve explants, and up-regulated cell surface expression of MAC-2 by Schwann cells and macrophages. Interleukin-1 beta up-regulated GM-CSF production thus suggesting that injury induced GM-CSF production may be mediated by interleukin-1 beta. Our findings highlight the fact that fibroblasts, by producing GM-CSF and thereby affecting macrophage and Schwann function, play a significant role in the cascade of molecular events and cellular interactions of Wallerian degeneration.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2789-2789
Author(s):  
Lindsey F Call ◽  
Sommer Castro ◽  
Thao T. Tang ◽  
Cynthia Nourigat-Mckay ◽  
LaKeisha Perkins ◽  
...  

Abstract Adoptive transfer of T cells engineered to express chimeric antigen receptors (CARs) has achieved impressive outcomes in the treatment of refractory/relapsed B-ALL, providing potentially curative treatment options for these patients. The use of CAR T in AML, however, is still in its infancy with limitations due to the innate heterogeneity associated with AML and the lack of AML-specific targets for therapeutic development. The CRLF2 gene encodes for thymic stromal lymphopoietin receptor (TSLPR) and has previously been shown to be highly upregulated in a subset of children and adults with B-ALL. Targeting TSLPR with CAR T cells demonstrates potent anti-leukemia activity against TSLPR-positive B-ALL (PMID 26041741). Through Target Pediatric AML (TpAML), we profiled the transcriptome of nearly 3000 children and young adults with AML and identified CRLF2 (TSLPR) to be highly expressed in a subset of AML, including the majority of AML harboring KM2TA (aka MLL) fusions. TSLPR cell surface expression was validated in primary patient samples using flow cytometry, which showed uniform expression of TSLPR on AML blasts. Given that TSLPR is expressed in AML with confirmed cell surface expression, we developed TSLPR-directed CAR T for preclinical evaluation in AML. We generated a TSLPR-directed CAR using the single-chain variable fragment (scFv) derived from an anti-TSLPR binder (clone 3G1, MD Anderson), IgG4 spacer and 41-BB/CD3zeta signaling domains. The in vitro cytotoxicity of TSLPR CAR T cells was evaluated against the REH-1 cell line and primary AML specimens. TSLPR CAR T cells demonstrated anti-leukemia activity against REH-1 as well as against primary AML specimens. To evaluate the in vivo efficacy of TSLPR CAR T cells, we developed a patient-derived xenograft (PDX) model using bone marrow cells from a TSLPR-positive patient. These cells provided a robust model system to evaluate the in vivo activity of TSLPR CAR T cells, as they produced an aggressive leukemia in humanized NSG-SGM3 mice. The PDX generated from these cells died within 2 months of transplant with significant leukemia infiltration into the bone marrow, liver, and spleen. In the in vivo study, the leukemia burden was assessed by flow cytometric analysis of AML cells in the peripheral blood and bone marrow aspirates following treatment with unmodified control or TSLPR CAR T cells given at 10x10 6 T cells per mouse. After CAR T treatment, we detected a significant decrease in leukemia infiltration into the peripheral blood and bone marrow in the CAR T-treated mice compared to mice that received unmodified T cells. In this study, we report that similar to B-ALL, CRLF2 (TSLPR) is overexpressed in a subset of AML, providing a strategy to eliminate AML cells with CAR T cell therapy. We validated the cell surface expression of TSLPR and showed that the expression is uniform across AML specimens. We further demonstrate that CAR T cells targeting TSLPR were effective in eliminating AML cells in vitro and in vivo. Given that TSLPR is highly expressed in the KMT2A-rearranged AML, a subtype that is associated with poor outcomes, TSLPR-directed CAR T cells represent a promising immunotherapy for this high-risk AML subset. Disclosures Pardo: Hematologics, Inc.: Current Employment.


Sign in / Sign up

Export Citation Format

Share Document