scholarly journals Disruption of the NF-H Gene Increases Axonal Microtubule Content and Velocity of Neurofilament Transport: Relief of Axonopathy Resulting from the Toxin β,β′-Iminodipropionitrile

1998 ◽  
Vol 143 (1) ◽  
pp. 183-193 ◽  
Author(s):  
Qinzhang Zhu ◽  
Michael Lindenbaum ◽  
Françoise Levavasseur ◽  
Hélène Jacomy ◽  
Jean-Pierre Julien

To investigate the role of the neurofilament heavy (NF-H) subunit in neuronal function, we generated mice bearing a targeted disruption of the gene coding for the NF-H subunit. Surprisingly, the lack of NF-H subunits had little effect on axonal calibers and electron microscopy revealed no significant changes in the number and packing density of neurofilaments made up of only the neurofilament light (NF-L) and neurofilament medium (NF-M) subunits. However, our analysis of NF-H knockout mice revealed an ∼2.4-fold increase of microtubule density in their large ventral root axons. This finding was further corroborated by a corresponding increase in the ratio of assembled tubulin to NF-L protein in insoluble cytoskeletal preparations from the sciatic nerve. Axonal transport studies carried out by the injection of [35S]methionine into spinal cord revealed an increased transport velocity of newly synthesized NF-L and NF-M proteins in motor axons of NF-H knockout mice. When treated with β,β′-iminodipropionitrile (IDPN), a neurotoxin that segregates microtubules and retards neurofilament transport, mice heterozygous or homozygous for the NF-H null mutation did not develop neurofilamentous swellings in motor neurons, unlike normal mouse littermates. These results indicate that the NF-H subunit is a key mediator of IDPN-induced axonopathy.

2001 ◽  
Vol 356 (3) ◽  
pp. 737-745 ◽  
Author(s):  
Akiko ISHII ◽  
S. Hao LO

Regeneration of skeletal muscle requires the activation, proliferation, differentiation and fusion of satellite cells to generate new muscle fibres. This study was designed to determine the role of tensin in this process. Cardiotoxin was used to induce regeneration in the anterior tibial muscles of tensin-knockout and wild-type mice. From histological analysis, we found that the regeneration process lasted longer in knockout than in wild-type mice. To investigate the mechanism involved in this delay, we examined each regeneration step in animals and cultured primary cells. We found fewer proliferating myogenic cells identified by bromodeoxyuridine and desmin double labelling in knockout mice on the first 2 days after injury. Expression of myosin, paxillin, dystrophin and dystrophin-associated proteins were delayed in knockout mice. Withdrawal from the cell cycle was less efficient in isolated knockout myoblasts, and the fusion capacity was reduced in these cells as well. These defects in regeneration most likely contributed to the 9-fold increase of centrally nucleated fibres occurring in the non-injected knockout mice. Our results demonstrated clearly that tensin plays a role in skeletal-muscle regeneration.


2003 ◽  
Vol 90 (08) ◽  
pp. 351-360 ◽  
Author(s):  
Mark Corwin ◽  
Hon Yu ◽  
Jun Wang ◽  
Orhan Nalcioglu ◽  
Min-Ying Su ◽  
...  

SummaryAn unexplained paradox of malignant melanoma is the apparent failure of the blood within the tumor to clot despite the presence of multiple factors that should promote blood clotting. Here we present histochemical evidence that human and murine melanomas are extensively infiltrated by abundant mast cells. Because mast cells contain the natural anticoagulant heparin, the present studies were aimed at defining the role of mast cell heparin in preventing the blood from clotting within B16 melanoma grafts in C57BL/6 J mice. Mice bearing B16 melanoma grafts were treated with non-specific or specific inhibitors of mast cell heparin (protamine or heparinase, respectively). After the drug treatment there was histologic and functional evidence of selective thrombosis of the blood vessels within the protamine and heparinase treated melanoma grafts. A similar, high degree of thrombosis was also observed in B16 tumors grown in transgenic NDST-2 knockout mice bearing a targeted disruption in the gene coding for mast cell heparin synthesis. The tumors grown in the protamine-treated animals were significantly smaller than the tumors from control (untreated mice). By contrast, the tumors treated with heparinase or grown in the NDST-2 knockout mice were significantly larger than the tumors from control (untreated) mice. We conclude that the intrinsic procoagulant properties of malignant melanoma are neutralized in vivo by the anticoagulant properties of endogenous heparin produced by mast cells that naturally infiltrate the tumor. Our results also suggest that thrombosis and hemostasis within melanoma may play a complex role in modulating the growth of the tumor.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 861-861 ◽  
Author(s):  
Chun Shik Park ◽  
Takeshi Yamada ◽  
Koramit Suppipat ◽  
Maksim Mamonkin ◽  
H. Daniel Lacorazza

Abstract Abstract 861 Hematopoiesis is a highly regulated process in which a small number of hematopoietic stem cells (HSC) generate all mature blood cells. In order to preserve homeostasis of the hematopoietic system throughout lifetime, this pool of HSC must be maintained by the processes of self-renewal and survival. Self-renewal requires a coordination of survival signals and control of proliferation uncoupled from differentiation. Even though extrinsic signals from the microenvironment and cell-intrinsic regulators are required for self-renewal of HSCs, the intricate transcriptional machinery that selectively regulates HSC self-renewal and survival is still poorly understood. Krüppel-like factor 4 (KLF4) is a zinc-finger transcription factor that regulates proliferation, differentiation, apoptosis, and self-renewal. The role of KLF4 in reprogramming adult somatic cells into pluripotent stem cells along with OCT3/4, c-Myc and SOX2 suggests that KLF4 is required for preservation of an undifferentiated state. To investigate the function of KLF4 in HSC maintenance, we used conditional Klf4 knockout mice (Klf4fl/flVav-iCre+) to specifically delete KLF4 gene in hematopoietic cells. We first analyzed the frequency of HSC and progenitor cells in the bone marrow (BM) of Klf4fl/flVav-iCre– (control) and Klf4fl/flVav-iCre+ (knockout) by flow cytometry. We found that KLF4 deficiency leads to a 2.4-fold increase in the number of long-term HSC (Lin–Sca-1+c-Kit+ CD150+ CD48–) and a 2.2-fold increase in short-term HSC compartements (Lin–Sca-1+c-Kit+ CD150+ CD48+) whereas no significant changes were found in myeloid and lymphoid progenitor cells. Consistent with this phenotypic analysis, KLF4 expression in HSC is higher than hematopoietic progenitor cells and mature lineages (n=3; P<0.05). Even though ablation of Klf4 gene does not affect multi-lineage potential of HSC upon transplantation, its deletion leads to a reduction of monocytes and T cell expansion. To assess the effect of Klf4 ablation in self-renewal, we performed serial competitive repopulation assays using a 1:1 mixture of BM cells from control (Klf4fl/flVav-iCre–; CD45.2+) or knockout (Klf4fl/flVav-iCre+; CD45.2+) with B6.SJL (CD45.1+) mice. In primary transplants, the contribution of knockout BM cells in peripheral blood was similar to controls. Interestingly, loss of KLF4 led to enhanced contribution to peripheral blood in secondary transplants (4.5-fold; P<0.005) and tertiary transplants (2.6-fold; P<0.005). Consistent with this result, we found a significant increased number of colony forming units only in the third replating on methylcellulose (P<0.0005). To further characterize the role of KLF4 in HSC proliferation, we determined expression of Ki-67 and DNA content in nuclei of LSK CD150+ cells. The fraction of G0 cells defined as Ki-67– within 2n DNA in Klf4-knockout LSK CD150+ cells was similar to control (control 74.3 ± 0.7% vs 73.2 ± 2.3%). However, Annexin V staining revealed a 2.4-fold increased survival of LSK CD150+ cells in Klf4-knockout mice compared to control mice but not in myeloid progenitor cells (Lin–c-Kit+Sca-1–) suggesting that KLF4 selectively regulates the survival of HSC. These studies indicate that KLF4 controls steady state HSC survival and self-renewal under stress conditions. Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 106 (4) ◽  
pp. 389-400 ◽  
Author(s):  
Kirsty A. Walters ◽  
Melissa C. Edwards ◽  
Dijana Tesic ◽  
Aimee S.L. Caldwell ◽  
Mark Jimenez ◽  
...  

The androgen receptor (AR) is expressed throughout the hypothalamic-pituitary-gonadal (HPG) axis, and findings from female global AR knockout mice confirm that AR-mediated androgen actions play important roles in regulating female reproductive function. We generated neuron-specific AR knockout mice (NeurARKO) to investigate the functional role of neuronal AR-mediated androgen action in regulating the female HPG axis and fertility. Relative to control females, NeurARKO females exhibited elevated luteinizing hormone (LH) levels at diestrus (p < 0.05) and a compromised serum LH response to ovariectomy and E2 priming (p < 0.01). Furthermore, NeurARKO females displayed reduced Kiss1 mRNA expression in the anteroventral periventricular nucleus at diestrus (p < 0.05) and proestrus (p < 0.05), but elevated Kiss1 (p < 0.05) and neurokinin B (Tac2, p < 0.05) mRNA expression in the arcuate nucleus at proestrus compared to WT controls. Ovarian follicle dynamics were also altered in NeurARKO ovaries at 3 months of age, with a significant reduction in large antral follicle numbers at the proestrus stage compared to control WT ovaries (p < 0.05). Increased follicular atresia was evident in NeurARKO ovaries with a 4-fold increase in unhealthy large preantral follicles (p < 0.01). Despite the findings of aberrant neuroendocrine and ovarian characteristics in the NeurARKO females, estrous cyclicity and overall fertility were comparable between NeurARKO and WT females. In conclusion, our findings revealed that selective loss of neuronal AR actions impacts the kisspeptin/GnRH/LH cascade leading to compromised ovarian follicle dynamics.


1992 ◽  
Vol 67 (01) ◽  
pp. 111-116 ◽  
Author(s):  
Marcel Levi ◽  
Jan Paul de Boer ◽  
Dorina Roem ◽  
Jan Wouter ten Cate ◽  
C Erik Hack

SummaryInfusion of desamino-d-arginine vasopressin (DDAVP) results in an increase in plasma plasminogen activator activity. Whether this increase results in the generation of plasmin in vivo has never been established.A novel sensitive radioimmunoassay (RIA) for the measurement of the complex between plasmin and its main inhibitor α2 antiplasmin (PAP complex) was developed using monoclonal antibodies preferentially reacting with complexed and inactivated α2-antiplasmin and monoclonal antibodies against plasmin. The assay was validated in healthy volunteers and in patients with an activated fibrinolytic system.Infusion of DDAVP in a randomized placebo controlled crossover study resulted in all volunteers in a 6.6-fold increase in PAP complex, which was maximal between 15 and 30 min after the start of the infusion. Hereafter, plasma levels of PAP complex decreased with an apparent half-life of disappearance of about 120 min. Infusion of DDAVP did not induce generation of thrombin, as measured by plasma levels of prothrombin fragment F1+2 and thrombin-antithrombin III (TAT) complex.We conclude that the increase in plasminogen activator activity upon the infusion of DDAVP results in the in vivo generation of plasmin, in the absence of coagulation activation. Studying the DDAVP induced increase in PAP complex of patients with thromboembolic disease and a defective plasminogen activator response upon DDAVP may provide more insight into the role of the fibrinolytic system in the pathogenesis of thrombosis.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1083
Author(s):  
Adhirath Sikand ◽  
Malgorzata Jaszczur ◽  
Linda B. Bloom ◽  
Roger Woodgate ◽  
Michael M. Cox ◽  
...  

In the mid 1970s, Miroslav Radman and Evelyn Witkin proposed that Escherichia coli must encode a specialized error-prone DNA polymerase (pol) to account for the 100-fold increase in mutations accompanying induction of the SOS regulon. By the late 1980s, genetic studies showed that SOS mutagenesis required the presence of two “UV mutagenesis” genes, umuC and umuD, along with recA. Guided by the genetics, decades of biochemical studies have defined the predicted error-prone DNA polymerase as an activated complex of these three gene products, assembled as a mutasome, pol V Mut = UmuD’2C-RecA-ATP. Here, we explore the role of the β-sliding processivity clamp on the efficiency of pol V Mut-catalyzed DNA synthesis on undamaged DNA and during translesion DNA synthesis (TLS). Primer elongation efficiencies and TLS were strongly enhanced in the presence of β. The results suggest that β may have two stabilizing roles: its canonical role in tethering the pol at a primer-3’-terminus, and a possible second role in inhibiting pol V Mut’s ATPase to reduce the rate of mutasome-DNA dissociation. The identification of umuC, umuD, and recA homologs in numerous strains of pathogenic bacteria and plasmids will ensure the long and productive continuation of the genetic and biochemical journey initiated by Radman and Witkin.


2021 ◽  
pp. 004947552098277
Author(s):  
Madhu Kharel ◽  
Alpha Pokharel ◽  
Krishna P Sapkota ◽  
Prasant V Shahi ◽  
Pratisha Shakya ◽  
...  

Evidence-based decision-making is less common in low- and middle-income countries where the research capacity remains low. Nepal, a lower-middle-income country in Asia, is not an exception. We conducted a rapid review to identify the trend of health research in Nepal and found more than seven-fold increase in the number of published health-related articles between 2000 and 2018. The proportion of articles with Nepalese researchers as the first authors has also risen over the years, though they are still only in two-thirds of the articles in 2018.


Sign in / Sign up

Export Citation Format

Share Document