scholarly journals Nucleocytoplasmic Shuttling of the Cdc42p Exchange Factor Cdc24p

2000 ◽  
Vol 148 (6) ◽  
pp. 1115-1122 ◽  
Author(s):  
Aljoscha Nern ◽  
Robert A. Arkowitz

Cdc24p, the GDP/GTP exchange factor for the regulator of actin cytoskeleton Cdc42p, localizes to sites of polarized growth. Here we show that Cdc24p shuttles in and out of the yeast nucleus during vegetative growth. Far1p is necessary and sufficient for nuclear accumulation of Cdc24p, suggesting that its nuclear import occurs via an association with Far1p. Nuclear export is triggered either by entry into the cell cycle or by mating pheromone. As Far1p is degraded upon entry into the cell cycle, cell cycle–dependent export of Cdc24p occurs in the absence of Far1p, whereas during mating similar export kinetics indicate that a Cdc24p–Far1p complex is exported. Our results suggest that the nucleus serves as a store of preformed Cdc24p–Far1p complex which is required for chemotropism.

2008 ◽  
Vol 19 (9) ◽  
pp. 4006-4018 ◽  
Author(s):  
Mignon A. Keaton ◽  
Lee Szkotnicki ◽  
Aron R. Marquitz ◽  
Jake Harrison ◽  
Trevin R. Zyla ◽  
...  

Nucleocytoplasmic shuttling is prevalent among many cell cycle regulators controlling the G2/M transition. Shuttling of cyclin/cyclin-dependent kinase (CDK) complexes is thought to provide access to substrates stably located in either compartment. Because cyclin/CDK shuttles between cellular compartments, an upstream regulator that is fixed in one compartment could in principle affect the entire cyclin/CDK pool. Alternatively, the regulators themselves may need to shuttle to effectively regulate their moving target. Here, we identify localization motifs in the budding yeast Swe1p (Wee1) and Mih1p (Cdc25) cell cycle regulators. Replacement of endogenous Swe1p or Mih1p with mutants impaired in nuclear import or export revealed that the nuclear pools of Swe1p and Mih1p were more effective in CDK regulation than were the cytoplasmic pools. Nevertheless, shuttling of cyclin/CDK complexes was sufficiently rapid to coordinate nuclear and cytoplasmic events even when Swe1p or Mih1p were restricted to one compartment. Additionally, we found that Swe1p nuclear export was important for its degradation. Because Swe1p degradation is regulated by cytoskeletal stress, shuttling of Swe1p between nucleus and cytoplasm serves to couple cytoplasmic stress to nuclear cyclin/CDK inhibition.


1995 ◽  
Vol 130 (2) ◽  
pp. 255-263 ◽  
Author(s):  
T Tagawa ◽  
T Kuroki ◽  
P K Vogt ◽  
K Chida

Cell cycle-dependent phosphorylation and nuclear import of the tumorigenic transcription factor viral Jun (v-Jun) were investigated in chicken embryo fibroblasts. Nuclear accumulation of v-Jun but not of cellular Jun (c-Jun) is cell cycle dependent, decreasing in G1 and increasing in G2. The cell cycle-dependent regulation of v-Jun was mapped to a single serine residue at position 248 (Ser248), adjacent to the nuclear localization signal (NLS). Ser248 of v-Jun represents an amino acid substitution, replacing cysteine of c-Jun. It was shown by peptidase digestion and immunoprecipitation with antibody to the NLS that v-Jun is phosphorylated at Ser248 in the cytoplasm but not in the nucleus. This phosphorylation is high in G1 and low in G2. Nuclear accumulation of v-Jun is correlated with underphosphorylation at Ser248. The regulation of nuclear import by phosphorylation was also examined using NLS peptides with Ser248 of v-Jun. Phosphorylation of the serine inhibited nuclear import mediated by the NLS peptide in vivo and in vitro. The protein kinase inhibitors staurosporine and H7 stimulated but the phosphatase inhibitor okadaic acid inhibited nuclear import mediated by the NLS peptide. The cytosolic activity of protein kinases phosphorylating Ser248 increased in G0 and decreased during cell cycle progression, reaching a minimum in G2, whereas phosphatase activity dephosphorylating Ser248 was not changed. These results show that nuclear import of v-Jun is negatively regulated by phosphorylation at Ser248 in the cytoplasm in a cell cycle-dependent manner.


1999 ◽  
Vol 10 (5) ◽  
pp. 1395-1407 ◽  
Author(s):  
Frédérique Gaits ◽  
Paul Russell

Transcriptional induction of many stress-response genes is dependent on stress-induced nuclear accumulation of stress-activated protein kinases (SAPKs). In the fission yeastSchizosaccharomyces pombe, nuclear accumulation of the SAPK Spc1 (also known as StyI) requires activating phosphorylation catalyzed by the SAPK kinase Wis1; however, it is unknown whether the localization of Spc1 is regulated by nuclear transport factors. Herein are reported studies that show that Spc1 localization is regulated by active transport mechanisms during osmotic stress. Nuclear import of Spc1 requires Pim1, a homologue of the guanine nucleotide exchange factor RCC1 that is essential for nucleocytoplasmic shuttling of proteins. Nuclear export of Spc1 is regulated by the export factor Crm1. An Spc1–Crm1 complex forms as Spc1 is exported from the nucleus. Wis1 and the tyrosine phosphatases Pyp1 and Pyp2 that inactivate Spc1 are excluded from the nucleus by a Crm1-independent mechanism; hence the nuclear import of Spc1 leads to transient isolation from its regulatory proteins. Thus, active nucleocytoplasmic shuttling is required for both the function and regulation of Spc1 during the osmotic shock response.


2014 ◽  
Vol 25 (7) ◽  
pp. 1137-1150 ◽  
Author(s):  
Sofía Muñoz ◽  
Elvira Manjón ◽  
Patricia García ◽  
Per Sunnerhagen ◽  
Yolanda Sánchez

Guanine nucleotide exchange factors control many aspects of cell morphogenesis by turning on Rho-GTPases. The fission yeast exchange factor Rgf1p (Rho gef1) specifically regulates Rho1p during polarized growth and localizes to cortical sites. Here we report that Rgf1p is relocalized to the cell nucleus during the stalled replication caused by hydroxyurea (HU). Import to the nucleus is mediated by a nuclear localization sequence at the N-terminus of Rgf1p, whereas release into the cytoplasm requires two leucine-rich nuclear export sequences at the C-terminus. Moreover, Rgf1p nuclear accumulation during replication arrest depends on the 14-3-3 chaperone Rad24p and the DNA replication checkpoint kinase Cds1p. Both proteins control the nuclear accumulation of Rgf1p by inhibition of its nuclear export. A mutant, Rgf1p-9A, that substitutes nine serine potential phosphorylation Cds1p sites for alanine fails to accumulate in the nucleus in response to replication stress, and this correlates with a severe defect in survival in the presence of HU. In conclusion, we propose that the regulation of Rgf1p could be part of the mechanism by which Cds1p and Rad24p promote survival in the presence of chronic replication stress. It will be of general interest to understand whether the same is true for homologues of Rgf1p in budding yeast and higher eukaryotes.


1995 ◽  
Vol 129 (6) ◽  
pp. 1575-1588 ◽  
Author(s):  
V Mermall ◽  
K G Miller

The 95F myosin, a class VI unconventional myosin, associates with particles in the cytoplasm of the Drosophila syncytial blastoderm and is required for the ATP- and F-actin-dependent translocation of these particles. The particles undergo a cell cycle-dependent redistribution from domains that surround each nucleus in interphase to transient membrane invaginations that provide a barrier between adjacent spindles during mitosis. When 95F myosin function is inhibited by antibody injection, profound defects in syncytial blastoderm organization occur. This disorganization is seen as aberrant nuclear morphology and position and is suggestive of failures in cytoskeletal function. Nuclear defects correlate with gross defects in the actin cytoskeleton, including indistinct actin caps and furrows, missing actin structures, abnormal spacing of caps, and abnormally spaced furrows. Three-dimensional examination of embryos injected with anti-95F myosin antibody reveals that actin furrows do not invaginate as deeply into the embryo as do normal furrows. These furrows do not separate adjacent mitoses, since microtubules cross over them. These inappropriate microtubule interactions lead to aberrant nuclear divisions and to the nuclear defects observed. We propose that 95F myosin function is required to generate normal actin-based transient membrane furrows. The motor activity of 95F myosin itself and/or components within the particles transported to the furrows by 95F myosin may be required for normal furrows to form.


2021 ◽  
Author(s):  
Chris Y. Cheung ◽  
Ting-Ting Huang ◽  
Ning Chow ◽  
Shuqi Zhang ◽  
Yanxiang Zhao ◽  
...  

NFAT5 is the only known mammalian tonicity-responsive transcription factor functionally implicated in diverse physiological and pathological processes. NFAT5 activity is tightly regulated by extracellular tonicity but the underlying mechanisms remain elusive. We demonstrated that NFAT5 enters the nucleus via the nuclear pore complex. We also found that NFAT5 utilizes a non-canonical nuclear localization signal (NFAT5-NLS) for nuclear imports. siRNA screening revealed that karyopherin beta-1 (KPNB1) drives nuclear import of NFAT5 via directly interacting with NFAT5-NLS. Proteomics analysis and siRNA screening further revealed that nuclear export of NFAT5 under hypotonicity is mediated by Exportin-T, and that it requires RuvB-Like AAA type ATPase 2 (RUVBL2) as an indispensable chaperone. Our findings have identified KPNB1 and RUVBL2 as key molecules responsible for the unconventional tonicity-regulated nucleocytoplasmic shuttling of NFAT5. These findings offer an opportunity for developing novel NFAT5 targeting strategies that are potentially useful for the treatment of diseases associated with NFAT5 dysregulation.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Akira Takano ◽  
Takuya Kajita ◽  
Makoto Mochizuki ◽  
Toshiya Endo ◽  
Tohru Yoshihisa

tRNAs are unique among various RNAs in that they shuttle between the nucleus and the cytoplasm, and their localization is regulated by nutrient conditions. Although nuclear export of tRNAs has been well documented, the import machinery is poorly understood. Here, we identified Ssa2p, a major cytoplasmic Hsp70 in Saccharomyces cerevisiae, as a tRNA-binding protein whose deletion compromises nuclear accumulation of tRNAs upon nutrient starvation. Ssa2p recognizes several structural features of tRNAs through its nucleotide-binding domain, but prefers loosely-folded tRNAs, suggesting that Ssa2p has a chaperone-like activity for RNAs. Ssa2p also binds Nup116, one of the yeast nucleoporins. Sis1p and Ydj1p, cytoplasmic co-chaperones for Ssa proteins, were also found to contribute to the tRNA import. These results unveil a novel function of the Ssa2p system as a tRNA carrier for nuclear import by a novel mode of substrate recognition. Such Ssa2p-mediated tRNA import likely contributes to quality control of cytosolic tRNAs.


Sign in / Sign up

Export Citation Format

Share Document