scholarly journals An Exclusively Nuclear RNA-Binding Protein Affects Asymmetric Localization of ASH1 mRNA and Ash1p in Yeast

2001 ◽  
Vol 153 (2) ◽  
pp. 307-318 ◽  
Author(s):  
Roy M. Long ◽  
Wei Gu ◽  
Xiuhua Meng ◽  
Graydon Gonsalvez ◽  
Robert H. Singer ◽  
...  

The localization of ASH1 mRNA to the distal tip of budding yeast cells is essential for the proper regulation of mating type switching in Saccharomyces cerevisiae. A localization element that is predominantly in the 3′-untranslated region (UTR) can direct this mRNA to the bud. Using this element in the three-hybrid in vivo RNA-binding assay, we identified a protein, Loc1p, that binds in vitro directly to the wild-type ASH1 3′-UTR RNA, but not to a mutant RNA incapable of localizing to the bud nor to several other mRNAs. LOC1 codes for a novel protein that recognizes double-stranded RNA structures and is required for efficient localization of ASH1 mRNA. Accordingly, Ash1p gets symmetrically distributed between daughter and mother cells in a loc1 strain. Surprisingly, Loc1p was found to be strictly nuclear, unlike other known RNA-binding proteins involved in mRNA localization which shuttle between the nucleus and the cytoplasm. We propose that efficient cytoplasmic ASH1 mRNA localization requires a previous interaction with specific nuclear factors.

2018 ◽  
Vol 1 (5) ◽  
pp. e201800187 ◽  
Author(s):  
Daniela Lazzaretti ◽  
Lina Bandholz-Cajamarca ◽  
Christiane Emmerich ◽  
Kristina Schaaf ◽  
Claire Basquin ◽  
...  

During mRNA localization, RNA-binding proteins interact with specific structured mRNA localization motifs. Although several such motifs have been identified, we have limited structural information on how these interact with RNA-binding proteins. Staufen proteins bind structured mRNA motifs through dsRNA-binding domains (dsRBD) and are involved in mRNA localization in Drosophila and mammals. We solved the structure of two dsRBDs of human Staufen1 in complex with a physiological dsRNA sequence. We identified interactions between the dsRBDs and the RNA sugar–phosphate backbone and direct contacts of conserved Staufen residues to RNA bases. Mutating residues mediating nonspecific backbone interactions only affected Staufen function in Drosophila when in vitro binding was severely reduced. Conversely, residues involved in base-directed interactions were required in vivo even when they minimally affected in vitro binding. Our work revealed that Staufen can read sequence features in the minor groove of dsRNA and suggests that these influence target selection in vivo.


2003 ◽  
Vol 23 (19) ◽  
pp. 7055-7067 ◽  
Author(s):  
Shelly A. Waggoner ◽  
Stephen A. Liebhaber

ABSTRACT Posttranscriptional controls in higher eukaryotes are central to cell differentiation and developmental programs. These controls reflect sequence-specific interactions of mRNAs with one or more RNA binding proteins. The α-globin poly(C) binding proteins (αCPs) comprise a highly abundant subset of K homology (KH) domain RNA binding proteins and have a characteristic preference for binding single-stranded C-rich motifs. αCPs have been implicated in translation control and stabilization of multiple cellular and viral mRNAs. To explore the full contribution of αCPs to cell function, we have identified a set of mRNAs that associate in vivo with the major αCP2 isoforms. One hundred sixty mRNA species were consistently identified in three independent analyses of αCP2-RNP complexes immunopurified from a human hematopoietic cell line (K562). These mRNAs could be grouped into subsets encoding cytoskeletal components, transcription factors, proto-oncogenes, and cell signaling factors. Two mRNAs were linked to ceroid lipofuscinosis, indicating a potential role for αCP2 in this infantile neurodegenerative disease. Surprisingly, αCP2 mRNA itself was represented in αCP2-RNP complexes, suggesting autoregulatory control of αCP2 expression. In vitro analyses of representative target mRNAs confirmed direct binding of αCP2 within their 3′ untranslated regions. These data expand the list of mRNAs that associate with αCP2 in vivo and establish a foundation for modeling its role in coordinating pathways of posttranscriptional gene regulation.


2018 ◽  
Author(s):  
Alina Munteanu ◽  
Neelanjan Mukherjee ◽  
Uwe Ohler

AbstractMotivationRNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function. There are hundreds of RBPs encoded in the eukaryotic genomes, and each recognize its RNA targets through a specific mixture of RNA sequence and structure properties. For most RBPs, however, only a primary sequence motif has been determined, while the structure of the binding sites is uncharacterized.ResultsWe developed SSMART, an RNA motif finder that simultaneously models the primary sequence and the structural properties of the RNA targets sites. The sequence-structure motifs are represented as consensus strings over a degenerate alphabet, extending the IUPAC codes for nucleotides to account for secondary structure preferences. Evaluation on synthetic data showed that SSMART is able to recover both sequence and structure motifs implanted into 3‘UTR-like sequences, for various degrees of structured/unstructured binding sites. In addition, we successfully used SSMART on high-throughput in vivo and in vitro data, showing that we not only recover the known sequence motif, but also gain insight into the structural preferences of the RBP.AvailabilitySSMART is freely available at https://ohlerlab.mdc-berlin.de/software/SSMART_137/[email protected]


1987 ◽  
Vol 7 (9) ◽  
pp. 3268-3276 ◽  
Author(s):  
A B Sachs ◽  
R W Davis ◽  
R D Kornberg

The poly(A)-binding protein (PAB) gene of Saccharomyces cerevisiae is essential for cell growth. A 66-amino acid polypeptide containing half of a repeated N-terminal domain can replace the entire protein in vivo. Neither an octapeptide sequence conserved among eucaryotic RNA-binding proteins nor the C-terminal domain of PAB is required for function in vivo. A single N-terminal domain is nearly identical to the entire protein in the number of high-affinity sites for poly(A) binding in vitro (one site with an association constant of approximately 2 X 10(7) M-1) and in the size of the binding site (12 A residues). Multiple N-terminal domains afford a mechanism of PAB transfer between poly(A) strands.


1996 ◽  
Vol 16 (7) ◽  
pp. 3668-3678 ◽  
Author(s):  
M F Henry ◽  
P A Silver

RNA-binding proteins play many essential roles in the metabolism of nuclear pre-mRNA. As such, they demonstrate a myriad of dynamic behaviors and modifications. In particular, heterogeneous nuclear ribonucleoproteins (hnRNPs) contain the bulk of methylated arginine residues in eukaryotic cells. We have identified the first eukaryotic hnRNP-specific methyltransferase via a genetic screen for proteins that interact with an abundant poly(A)+-RNA-binding protein termed Npl3p. We have previously shown that npl3-1 mutants are temperature sensitive for growth and defective for export of mRNA from the nucleus. New mutants in interacting genes were isolated by their failure to survive in the presence of the npl3-1 allele. Four alleles of the same gene were identified in this manner. Cloning of the cognate gene revealed an encoded protein with similarity to methyltransferases that was termed HMT1 for hnRNP methyltransferase. HMT1 is not required for normal cell viability except when NPL3 is also defective. The Hmt1 protein is located in the nucleus. We demonstrate that Npl3p is methylated by Hmt1p both in vivo and in vitro. These findings now allow further exploration of the function of this previously uncharacterized class of enzymes.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1473
Author(s):  
Mohamed Zaiou

Circular RNAs (circRNAs) are genome transcripts that are produced from back-splicing of specific regions of pre-mRNA. These single-stranded RNA molecules are widely expressed across diverse phyla and many of them are stable and evolutionary conserved between species. Growing evidence suggests that many circRNAs function as master regulators of gene expression by influencing both transcription and translation processes. Mechanistically, circRNAs are predicted to act as endogenous microRNA (miRNA) sponges, interact with functional RNA-binding proteins (RBPs), and associate with elements of the transcriptional machinery in the nucleus. Evidence is mounting that dysregulation of circRNAs is closely related to the occurrence of a range of diseases including cancer and metabolic diseases. Indeed, there are several reports implicating circRNAs in cardiovascular diseases (CVD), diabetes, hypertension, and atherosclerosis. However, there is very little research addressing the potential role of these RNA transcripts in the occurrence and development of obesity. Emerging data from in vitro and in vivo studies suggest that circRNAs are novel players in adipogenesis, white adipose browning, obesity, obesity-induced inflammation, and insulin resistance. This study explores the current state of knowledge on circRNAs regulating molecular processes associated with adipogenesis and obesity, highlights some of the challenges encountered while studying circRNAs and suggests some perspectives for future research directions in this exciting field of study.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 872 ◽  
Author(s):  
Clemens Grimm ◽  
Jann-Patrick Pelz ◽  
Cornelius Schneider ◽  
Katrin Schäffler ◽  
Utz Fischer

Eukaryotic cells determine the protein output of their genetic program by regulating mRNA transcription, localization, translation and turnover rates. This regulation is accomplished by an ensemble of RNA-binding proteins (RBPs) that bind to any given mRNA, thus forming mRNPs. Poly(A) binding proteins (PABPs) are prominent members of virtually all mRNPs that possess poly(A) tails. They serve as multifunctional scaffolds, allowing the recruitment of diverse factors containing a poly(A)-interacting motif (PAM) into mRNPs. We present the crystal structure of the variant PAM motif (termed PAM2w) in the N-terminal part of the positive translation factor LARP4B, which binds to the MLLE domain of the poly(A) binding protein C1 cytoplasmic 1 (PABPC1). The structural analysis, along with mutational studies in vitro and in vivo, uncovered a new mode of interaction between PAM2 motifs and MLLE domains.


2020 ◽  
Vol 48 (10) ◽  
pp. 5511-5526
Author(s):  
Tiago R Ferreira ◽  
Adam A Dowle ◽  
Ewan Parry ◽  
Eliza V C Alves-Ferreira ◽  
Karen Hogg ◽  
...  

Abstract RNA binding proteins (RBPs) are the primary gene regulators in kinetoplastids as transcriptional control is nearly absent, making Leishmania an exceptional model for investigating methylation of non-histone substrates. Arginine methylation is an evolutionarily conserved protein modification catalyzed by Protein aRginine Methyl Transferases (PRMTs). The chromatin modifier PRMT7 is the only Type III PRMT found in higher eukaryotes and a restricted number of unicellular eukaryotes. In Leishmania major, PRMT7 is a cytoplasmic protein implicit in pathogenesis with unknown substrates. Using comparative methyl-SILAC proteomics for the first time in protozoa, we identified 40 putative targets, including 17 RBPs hypomethylated upon PRMT7 knockout. PRMT7 can modify Alba3 and RBP16 trans-regulators (mammalian RPP25 and YBX2 homologs, respectively) as direct substrates in vitro. The absence of PRMT7 levels in vivo selectively reduces Alba3 mRNA-binding capacity to specific target transcripts and can impact the relative stability of RBP16 in the cytoplasm. RNA immunoprecipitation analyses demonstrate PRMT7-dependent methylation promotes Alba3 association with select target transcripts and thus indirectly stabilizes mRNA of a known virulence factor, δ-amastin surface antigen. These results highlight a novel role for PRMT7-mediated arginine methylation of RBP substrates, suggesting a regulatory pathway controlling gene expression and virulence in Leishmania. This work introduces Leishmania PRMTs as epigenetic regulators of mRNA metabolism with mechanistic insight into the functional manipulation of RBPs by methylation.


2019 ◽  
Vol 11 (10) ◽  
pp. 845-859 ◽  
Author(s):  
Alisha N Jones ◽  
Michael Sattler

Abstract Following the discovery of numerous long non-coding RNA (lncRNA) transcripts in the human genome, their important roles in biology and human disease are emerging. Recent progress in experimental methods has enabled the identification of structural features of lncRNAs. However, determining high-resolution structures is challenging as lncRNAs are expected to be dynamic and adopt multiple conformations, which may be modulated by interaction with protein binding partners. The X-inactive specific transcript (Xist) is necessary for X inactivation during dosage compensation in female placental mammals and one of the best-studied lncRNAs. Recent progress has provided new insights into the domain organization, molecular features, and RNA binding proteins that interact with distinct regions of Xist. The A-repeats located at the 5′ end of the transcript are of particular interest as they are essential for mediating silencing of the inactive X chromosome. Here, we discuss recent progress with elucidating structural features of the Xist lncRNA, focusing on the A-repeats. We discuss the experimental and computational approaches employed that have led to distinct structural models, likely reflecting the intrinsic dynamics of this RNA. The presence of multiple dynamic conformations may also play an important role in the formation of the associated RNPs, thus influencing the molecular mechanism underlying the biological function of the Xist A-repeats. We propose that integrative approaches that combine biochemical experiments and high-resolution structural biology in vitro with chemical probing and functional studies in vivo are required to unravel the molecular mechanisms of lncRNAs.


2012 ◽  
Vol 302 (10) ◽  
pp. E1269-E1282 ◽  
Author(s):  
Ruijin Shao ◽  
Xiaoqin Wang ◽  
Birgitta Weijdegård ◽  
Anders Norström ◽  
Julia Fernandez-Rodriguez ◽  
...  

Heterogeneous nuclear ribonucleoproteins (hnRNPs), which are chromatin-associated RNA-binding proteins, participate in mRNA stability, transport, intracellular localization, and translation by acting as transacting factors. Several studies have shown that steroid hormones can regulate hnRNP expression. However, to date, the regulation of hnRNPs and their interactions with steroid hormone signaling in fallopian tubes and endometrium are not fully elucidated. In the present study, we determined whether hnRNP expression is regulated during the menstrual cycle and correlates with estrogen receptor (ER) and progesterone receptor (PR) levels in human fallopian tubes in vivo. Because of the limited availability of human tubal tissues for the research, we also explored the mechanisms of hnRNP regulation in human endometrium in vitro. Fallopian tissue was obtained from patients in the early, late, and postovulatory phases and the midsecretory phase and endometrial tissue from premenopausal and postmenopausal women undergoing hysterectomy. We measured expression of hnRNPs and assessed their intracellular localization and interactions with ERs and PRs. We also determined the effects of human chorionic gonadotropin, 17β-estradiol (E2), and progesterone (P4) on hnRNP expression. In fallopian tubes, mRNA and protein levels of hnRNP A1, AB, D, G, H, and U changed dynamically during ovulation and in the midsecretory phase. In coimmunolocation and coimmunoprecipitation experiments, hnRNPs interacted with each other and with ERs and PRs in fallopian tubes. After treatment with E2 and/or P4 to activate ERs and PRs, hnRNP A1, AB, D, G, and U proteins displayed overlapping but distinct patterns of regulation in the endometrium in vitro. Our findings expand the physiological repertoire of hnRNPs in human fallopian tubes and endometrium and suggest that steroid hormones regulate different hnRNPs directly by interacting with ERs and/or PRs or indirectly by binding other hnRNPs. Both actions may contribute to regulation of gene transcription.


Sign in / Sign up

Export Citation Format

Share Document