scholarly journals Distinct versus overlapping functions of MDC1 and 53BP1 in DNA damage response and tumorigenesis

2008 ◽  
Vol 181 (5) ◽  
pp. 727-735 ◽  
Author(s):  
Katherine Minter-Dykhouse ◽  
Irene Ward ◽  
Michael S.Y. Huen ◽  
Junjie Chen ◽  
Zhenkun Lou

The importance of the DNA damage response (DDR) pathway in development, genomic stability, and tumor suppression is well recognized. Although 53BP1 and MDC1 have been recently identified as critical upstream mediators in the cellular response to DNA double-strand breaks, their relative hierarchy in the ataxia telangiectasia mutated (ATM) signaling cascade remains controversial. To investigate the divergent and potentially overlapping functions of MDC1 and 53BP1 in the ATM response pathway, we generated mice deficient for both genes. Unexpectedly, the loss of both MDC1 and 53BP1 neither significantly increases the severity of defects in DDR nor increases tumor incidence compared with the loss of MDC1 alone. We additionally show that MDC1 regulates 53BP1 foci formation and phosphorylation in response to DNA damage. These results suggest that MDC1 functions as an upstream regulator of 53BP1 in the DDR pathway and in tumor suppression.

Open Biology ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 150018 ◽  
Author(s):  
Jessica S. Brown ◽  
Stephen P. Jackson

Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.


2009 ◽  
Vol 187 (7) ◽  
pp. 977-990 ◽  
Author(s):  
Sairei So ◽  
Anthony J. Davis ◽  
David J. Chen

Ataxia telangiectasia mutated (ATM) plays a critical role in the cellular response to DNA damage. In response to DNA double-strand breaks (DSBs), ATM is autophosphorylated at serine 1981. Although this autophosphorylation is widely considered a sign of ATM activation, it is still not clear if autophosphorylation is required for ATM functions including localization to DSBs and activation of ATM kinase activity. In this study, we show that localization of ATM to DSBs is differentially regulated with the initial localization requiring the MRE11–RAD50–NBS1 complex and sustained retention requiring autophosphorylation of ATM at serine 1981. Autophosphorylated ATM interacts with MDC1 and the latter is required for the prolonged association of ATM to DSBs. Ablation of ATM autophosphorylation or knock-down of MDC1 protein affects the ability of ATM to phosphorylate downstream substrates and confer radioresistance. Together, these data suggest that autophosphorylation at serine 1981 stabilizes ATM at the sites of DSBs, and this is required for a proper DNA damage response.


2018 ◽  
Vol 115 (51) ◽  
pp. E11961-E11969 ◽  
Author(s):  
Tai-Yuan Yu ◽  
Michael T. Kimble ◽  
Lorraine S. Symington

The Mre11-Rad50-Xrs2NBS1 complex plays important roles in the DNA damage response by activating the Tel1ATM kinase and catalyzing 5′–3′ resection at DNA double-strand breaks (DSBs). To initiate resection, Mre11 endonuclease nicks the 5′ strands at DSB ends in a reaction stimulated by Sae2CtIP. Accordingly, Mre11-nuclease deficient (mre11-nd) and sae2Δ mutants are expected to exhibit similar phenotypes; however, we found several notable differences. First, sae2Δ cells exhibit greater sensitivity to genotoxins than mre11-nd cells. Second, sae2Δ is synthetic lethal with sgs1Δ, whereas the mre11-nd sgs1Δ mutant is viable. Third, Sae2 attenuates the Tel1-Rad53CHK2 checkpoint and antagonizes Rad953BP1 accumulation at DSBs independent of Mre11 nuclease. We show that Sae2 competes with other Tel1 substrates, thus reducing Rad9 binding to chromatin and to Rad53. We suggest that persistent Sae2 binding at DSBs in the mre11-nd mutant counteracts the inhibitory effects of Rad9 and Rad53 on Exo1 and Dna2-Sgs1–mediated resection, accounting for the different phenotypes conferred by mre11-nd and sae2Δ mutations. Collectively, these data show a resection initiation independent role for Sae2 at DSBs by modulating the DNA damage checkpoint.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoqiao Yue ◽  
Chenjun Bai ◽  
Dafei Xie ◽  
Teng Ma ◽  
Ping-Kun Zhou

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a member of the phosphatidylinositol 3-kinase related kinase family, which can phosphorylate more than 700 substrates. As the core enzyme, DNA-PKcs forms the active DNA-PK holoenzyme with the Ku80/Ku70 heterodimer to play crucial roles in cellular DNA damage response (DDR). Once DNA double strand breaks (DSBs) occur in the cells, DNA-PKcs is promptly recruited into damage sites and activated. DNA-PKcs is auto-phosphorylated and phosphorylated by Ataxia-Telangiectasia Mutated at multiple sites, and phosphorylates other targets, participating in a series of DDR and repair processes, which determine the cells’ fates: DSBs NHEJ repair and pathway choice, replication stress response, cell cycle checkpoints, telomeres length maintenance, senescence, autophagy, etc. Due to the special and multi-faceted roles of DNA-PKcs in the cellular responses to DNA damage, it is important to precisely regulate the formation and dynamic of its functional complex and activities for guarding genomic stability. On the other hand, targeting DNA-PKcs has been considered as a promising strategy of exploring novel radiosensitizers and killing agents of cancer cells. Combining DNA-PKcs inhibitors with radiotherapy can effectively enhance the efficacy of radiotherapy, offering more possibilities for cancer therapy.


2020 ◽  
Vol 48 (17) ◽  
pp. 9449-9461
Author(s):  
Lea Milling Korsholm ◽  
Zita Gál ◽  
Blanca Nieto ◽  
Oliver Quevedo ◽  
Stavroula Boukoura ◽  
...  

Abstract DNA damage poses a serious threat to human health and cells therefore continuously monitor and repair DNA lesions across the genome. Ribosomal DNA is a genomic domain that represents a particular challenge due to repetitive sequences, high transcriptional activity and its localization in the nucleolus, where the accessibility of DNA repair factors is limited. Recent discoveries have significantly extended our understanding of how cells respond to DNA double-strand breaks (DSBs) in the nucleolus, and new kinases and multiple down-stream targets have been identified. Restructuring of the nucleolus can occur as a consequence of DSBs and new data point to an active regulation of this process, challenging previous views. Furthermore, new insights into coordination of cell cycle phases and ribosomal DNA repair argue against existing concepts. In addition, the importance of nucleolar-DNA damage response (n-DDR) mechanisms for maintenance of genome stability and the potential of such factors as anti-cancer targets is becoming apparent. This review will provide a detailed discussion of recent findings and their implications for our understanding of the n-DDR. The n-DDR shares features with the DNA damage response (DDR) elsewhere in the genome but is also emerging as an independent response unique to ribosomal DNA and the nucleolus.


2012 ◽  
Vol 198 (3) ◽  
pp. 273-275 ◽  
Author(s):  
Yosef Shiloh ◽  
Yael Ziv

The ataxia telangiectasia mutated (ATM) protein kinase regulates the cellular response to deoxyribonucleic acid (DNA) double-strand breaks by phosphorylating numerous players in the extensive DNA damage response network. Two papers in this issue (Daniel et al. 2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb201204035; Yamamoto et al. 2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb201204098) strikingly show that, in mice, the presence of a catalytically inactive version of ATM is embryonically lethal. This is surprising because mice completely lacking ATM have a much more moderate phenotype. The findings impact on basic cancer research and cancer therapeutics.


2009 ◽  
Vol 187 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Jeffrey R. Skaar ◽  
Derek J. Richard ◽  
Anita Saraf ◽  
Alfredo Toschi ◽  
Emma Bolderson ◽  
...  

Human SSB1 (single-stranded binding protein 1 [hSSB1]) was recently identified as a part of the ataxia telangiectasia mutated (ATM) signaling pathway. To investigate hSSB1 function, we performed tandem affinity purifications of hSSB1 mutants mimicking the unphosphorylated and ATM-phosphorylated states. Both hSSB1 mutants copurified a subset of Integrator complex subunits and the uncharacterized protein LOC58493/c9orf80 (henceforth minute INTS3/hSSB-associated element [MISE]). The INTS3–MISE–hSSB1 complex plays a key role in ATM activation and RAD51 recruitment to DNA damage foci during the response to genotoxic stresses. These effects on the DNA damage response are caused by the control of hSSB1 transcription via INTS3, demonstrating a new network controlling hSSB1 function.


2011 ◽  
Vol 89 (1) ◽  
pp. 45-60 ◽  
Author(s):  
Kendra L. Cann ◽  
Graham Dellaire

Higher order chromatin structure has an impact on all nuclear functions, including the DNA damage response. Over the past several years, it has become increasingly clear that heterochromatin and euchromatin represent separate entities with respect to both damage sensitivity and repair. The chromatin compaction present in heterochromatin helps to protect this DNA from damage; however, when lesions do occur, the compaction restricts the ability of DNA damage response proteins to access the site, as evidenced by its ability to block the expansion of H2AX phosphorylation. As such, DNA damage in heterochromatin is refractory to repair, which requires the surrounding chromatin structure to be decondensed. In the case of DNA double-strand breaks, this relaxation is at least partially mediated by the ATM kinase phosphorylating and inhibiting the function of the transcriptional repressor KAP1. This review will focus on the functions of KAP1 and other proteins involved in the maintenance or restriction of heterochromatin, including HP1 and TIP60, in the DNA damage response. As heterochromatin is important for maintaining genomic stability, cells must maintain a delicate balance between allowing repair factors access to these regions and ensuring that these regions retain their organization to prevent increased DNA damage and chromosomal mutations.


Sign in / Sign up

Export Citation Format

Share Document