scholarly journals The RSC chromatin-remodeling complex influences mitotic exit and adaptation to the spindle assembly checkpoint by controlling the Cdc14 phosphatase

2010 ◽  
Vol 191 (5) ◽  
pp. 981-997 ◽  
Author(s):  
Valentina Rossio ◽  
Elena Galati ◽  
Matteo Ferrari ◽  
Achille Pellicioli ◽  
Takashi Sutani ◽  
...  

Upon prolonged activation of the spindle assembly checkpoint, cells escape from mitosis through a mechanism called adaptation or mitotic slippage, which is thought to underlie the resistance of cancer cells to antimitotic drugs. We show that, in budding yeast, this mechanism depends on known essential and nonessential regulators of mitotic exit, such as the Cdc14 early anaphase release (FEAR) pathway for the release of the Cdc14 phosphatase from the nucleolus in early anaphase. Moreover, the RSC (remodel the structure of chromatin) chromatin-remodeling complex bound to its accessory subunit Rsc2 is involved in this process as a novel component of the FEAR pathway. We show that Rsc2 interacts physically with the polo kinase Cdc5 and is required for timely phosphorylation of the Cdc14 inhibitor Net1, which is important to free Cdc14 in the active form. Our data suggest that fine-tuning regulators of mitotic exit have important functions during mitotic progression in cells treated with microtubule poisons and might be promising targets for cancer treatment.

2021 ◽  
Author(s):  
Mary Jane Tsang ◽  
Iain M Cheeseman

Mitotic chromosome segregation defects activate the Spindle Assembly Checkpoint (SAC), which inhibits the APC/C co-activator Cdc20 to induce a prolonged cell cycle arrest. Once errors are corrected, the SAC is silenced thereby allowing anaphase onset and mitotic exit to proceed. However, in the presence of persistent, unresolvable errors, cells can undergo "mitotic slippage", exiting mitosis into a tetraploid G1 state and escaping the cell death that results from a prolonged arrest. The molecular logic that allows cells to balance these dueling mitotic arrest and slippage behaviors remains unclear. Here we demonstrate that human cells modulate their mitotic arrest duration through the presence of conserved, alternative Cdc20 translational isoforms. Translation initiation at downstream start sites results in truncated Cdc20 isoforms that are resistant to SAC-mediated inhibition and promote mitotic exit even in the presence of mitotic perturbations. Targeted molecular changes or naturally-occurring mutations in cancer cells that alter the relative Cdc20 isoform levels or its translational regulatory control modulate both mitotic arrest duration and anti-mitotic drug sensitivity. Our work reveals a critical role for the differential translational regulation of Cdc20 in mitotic arrest timing, with important implications for the diagnosis and treatment of human cancers.


2009 ◽  
Vol 20 (10) ◽  
pp. 2626-2637 ◽  
Author(s):  
Elena Chiroli ◽  
Giulia Rancati ◽  
Ilaria Catusi ◽  
Giovanna Lucchini ◽  
Simonetta Piatti

The spindle assembly checkpoint (SAC) is an evolutionarily conserved surveillance mechanism that delays anaphase onset and mitotic exit in response to the lack of kinetochore attachment. The target of the SAC is the E3 ubiquitin ligase anaphase-promoting complex (APC) bound to its Cdc20 activator. The Cdc20/APC complex is in turn required for sister chromatid separation and mitotic exit through ubiquitin-mediated proteolysis of securin, thus relieving inhibition of separase that unties sister chromatids. Separase is also involved in the Cdc-fourteen early anaphase release (FEAR) pathway of nucleolar release and activation of the Cdc14 phosphatase, which regulates several microtubule-linked processes at the metaphase/anaphase transition and also drives mitotic exit. Here, we report that the SAC prevents separation of microtubule-organizing centers (spindle pole bodies [SPBs]) when spindle assembly is defective. Under these circumstances, failure of SAC activation causes unscheduled SPB separation, which requires Cdc20/APC, the FEAR pathway, cytoplasmic dynein, and the actin cytoskeleton. We propose that, besides inhibiting sister chromatid separation, the SAC preserves the accurate transmission of chromosomes also by preventing SPBs to migrate far apart until the conditions to assemble a bipolar spindle are satisfied.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ana C. Henriques ◽  
Patrícia M. A. Silva ◽  
Bruno Sarmento ◽  
Hassan Bousbaa

AbstractAntimitotic drugs arrest cells in mitosis through chronic activation of the spindle assembly checkpoint (SAC), leading to cell death. However, drug-treated cancer cells can escape death by undergoing mitotic slippage, due to premature mitotic exit. Therefore, overcoming slippage issue is a promising chemotherapeutic strategy to improve the effectiveness of antimitotics. Here, we antagonized SAC silencing by knocking down the MAD2-binding protein p31comet, to delay mitotic slippage, and tracked cancer cells treated with the antimitotic drug paclitaxel, over 3 days live-cell time-lapse analysis. We found that in the absence of p31comet, the duration of mitotic block was increased in cells challenged with nanomolar concentrations of paclitaxel, leading to an additive effects in terms of cell death which was predominantly anticipated during the first mitosis. As accumulation of an apoptotic signal was suggested to prevent mitotic slippage, when we challenged p31comet-depleted mitotic-arrested cells with the apoptosis potentiator Navitoclax (previously called ABT-263), cell fate was shifted to accelerated post-mitotic death. We conclude that inhibition of SAC silencing is critical for enhancing the lethality of antimitotic drugs as well as that of therapeutic apoptosis-inducing small molecules, with distinct mechanisms. The study highlights the potential of p31comet as a target for antimitotic therapies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Teng-Long Han ◽  
Hang Sha ◽  
Jun Ji ◽  
Yun-Tian Li ◽  
Deng-Shan Wu ◽  
...  

AbstractThe anticancer effects of taxanes are attributed to the induction of mitotic arrest through activation of the spindle assembly checkpoint. Cell death following extended mitotic arrest is mediated by the intrinsic apoptosis pathway. Accordingly, factors that influence the robustness of mitotic arrest or disrupt the apoptotic machinery confer drug resistance. Survivin is an inhibitor of apoptosis protein. Its overexpression is associated with chemoresistance, and its targeting leads to drug sensitization. However, Survivin also acts specifically in the spindle assembly checkpoint response to taxanes. Hence, the failure of Survivin-depleted cells to arrest in mitosis may lead to taxane resistance. Here we show that Survivin depletion protects HeLa cells against docetaxel-induced apoptosis by facilitating mitotic slippage. However, Survivin depletion does not promote clonogenic survival of tumor cells but increases the level of cellular senescence induced by docetaxel. Moreover, lentiviral overexpression of Survivin does not provide protection against docetaxel or cisplatin treatment, in contrast to the anti-apoptotic Bcl-xL or Bcl-2. Our findings suggest that targeting Survivin may influence the cell response to docetaxel by driving the cells through aberrant mitotic progression, rather than directly sensitizing cells to apoptosis.


2016 ◽  
Vol 215 (2) ◽  
pp. 143-145 ◽  
Author(s):  
Michael Brandeis

The spindle assembly checkpoint arrests mitotic cells by preventing degradation of cyclin B1 by the anaphase-promoting complex/cyclosome, but some cells evade this checkpoint and slip out of mitosis. Balachandran et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201601083) show that the E3 ligase CRL2ZYG11 degrades cyclin B1, allowing mitotic slippage.


2018 ◽  
Author(s):  
Lydia R Heasley ◽  
Jennifer G DeLuca ◽  
Steven M Markus

The Spindle Assembly Checkpoint (SAC) prevents erroneous chromosome segregation by delaying mitotic progression when chromosomes are incorrectly attached to the mitotic spindle. This delay is mediated by Mitotic Checkpoint Complexes (MCCs), which assemble at unattached kinetochores and repress the activity of the Anaphase Promoting Complex/Cyclosome (APC/C). The cellular localizations of MCCs are likely critical for proper SAC function, yet remain poorly defined. We recently demonstrated that in mammalian cells, in which the nuclear envelope disassembles during mitosis, MCCs diffuse throughout the spindle region and cytoplasm. Here, we employed binucleate yeast zygotes to examine the localization dynamics of SAC effectors required for MCC assembly and function in budding yeast, in which the nuclear envelope remains intact throughout mitosis. Our findings indicate that in yeast MCCs are confined to the nuclear compartment and excluded from the cytoplasm during mitosis. In contrast, we find that effectors of the Mitotic Exit Network (MEN) - a pathway that initiates disassembly of the anaphase spindle only when it is properly oriented - are in fact freely exchanged between multiple nuclei within a shared cytoplasm. Our study provides insight into how cell cycle checkpoints have evolved to function in diverse cellular contexts.


2017 ◽  
Vol 28 (15) ◽  
pp. 2035-2041 ◽  
Author(s):  
Hazheen K. Shirnekhi ◽  
Erin P. Kelley ◽  
Jennifer G. DeLuca ◽  
Jacob A. Herman

Aneuploidy, a condition that results from unequal partitioning of chromosomes during mitosis, is a hallmark of many cancers, including those caused by human papillomaviruses (HPVs). E6 and E7 are the primary transforming proteins in HPV that drive tumor progression. In this study, we stably expressed E6 and E7 in noncancerous RPE1 cells and analyzed the specific mitotic defects that contribute to aneuploidy in each cell line. We find that E6 expression results in multiple chromosomes associated with one or both spindle poles, causing a significant mitotic delay. In most cells, the misaligned chromosomes eventually migrated to the spindle equator, leading to mitotic exit. In some cells, however, mitotic exit occurred in the presence of pole-associated chromosomes. We determined that this premature mitotic exit is due to defects in spindle assembly checkpoint (SAC) signaling, such that cells are unable to maintain a prolonged mitotic arrest in the presence of unaligned chromosomes. This SAC defect is caused in part by a loss of kinetochore-associated Mad2 in E6-expressing cells. Our results demonstrate that E6-expressing cells exhibit previously unappreciated mitotic defects that likely contribute to HPV-mediated cancer progression.


2016 ◽  
Vol 212 (6) ◽  
pp. 647-659 ◽  
Author(s):  
Mayumi Isokane ◽  
Thomas Walter ◽  
Robert Mahen ◽  
Bianca Nijmeijer ◽  
Jean-Karim Hériché ◽  
...  

To prevent genome instability, mitotic exit is delayed until all chromosomes are properly attached to the mitotic spindle by the spindle assembly checkpoint (SAC). In this study, we characterized the function of ARHGEF17, identified in a genome-wide RNA interference screen for human mitosis genes. Through a series of quantitative imaging, biochemical, and biophysical experiments, we showed that ARHGEF17 is essential for SAC activity, because it is the major targeting factor that controls localization of the checkpoint kinase Mps1 to the kinetochore. This mitotic function is mediated by direct interaction of the central domain of ARHGEF17 with Mps1, which is autoregulated by the activity of Mps1 kinase, for which ARHGEF17 is a substrate. This mitosis-specific role is independent of ARHGEF17’s RhoGEF activity in interphase. Our study thus assigns a new mitotic function to ARHGEF17 and reveals the molecular mechanism for a key step in SAC establishment.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Margarida Moura ◽  
Mariana Osswald ◽  
Nelson Leça ◽  
João Barbosa ◽  
António J Pereira ◽  
...  

Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit.


Sign in / Sign up

Export Citation Format

Share Document