scholarly journals The functions and consequences of force at kinetochores

2013 ◽  
Vol 200 (5) ◽  
pp. 557-565 ◽  
Author(s):  
Florencia Rago ◽  
Iain M. Cheeseman

Chromosome segregation requires the generation of force at the kinetochore—the multiprotein structure that facilitates attachment of chromosomes to spindle microtubules. This force is required both to move chromosomes and to signal the formation of proper bioriented attachments. To understand the role of force in these processes, it is critical to define how force is generated at kinetochores, the contributions of this force to chromosome movement, and how the kinetochore is structured and organized to withstand and respond to force. Classical studies and recent work provide a framework to dissect the mechanisms, functions, and consequences of force at kinetochores.

Genome ◽  
1987 ◽  
Vol 29 (1) ◽  
pp. 63-66 ◽  
Author(s):  
Batia Pazy ◽  
Uzi Plitmann

Idiosyncratic chromosome behaviour during meiosis was found in pollen mother cells of Cuscuta babylonica Choisy, a thread-like holoparasitic herb. Its main features are among the following: (i) telomeric association between homologues through most stages of the process, which leads to persisting chromatid bivalents (= "demibivalents"); (ii) uncommon chromosome segregation in first and second anaphase; and (iii) prolonged intensified heterochromatinization. Although "regular" in its own way, this process leads to the formation of unviable products. Its further investigation might contribute to our understanding of the role of the spindle and chromosome movement in the ordinary process of meiosis. Key words: meiosis (abnormal), persisting demibivalents, Cuscuta babylonica.


2022 ◽  
Vol 12 ◽  
Author(s):  
Shoukai Yu

The spindle and kinetochore-associated complex is composed of three members: SKA1, SKA2, and SKA3. It is necessary for stabilizing spindle microtubules attaching to kinetochore (KT) in the middle stage of mitosis. The SKA complex is associated with poor prognosis in several human cancers. However, the role of SKA complex in rare malignant diseases, such as gliomas, has not been fully investigated. We investigated several databases, including Oncomine, UALCAN, and cBioPortal to explore the expression profile and prognostic significance of SKA complex in patients with gliomas. Gene ontology and Kyoto Encyclopedia of Genes and Genome pathways were used to analyze the potential enriched pathways. The genes co-expressed with SKA complex were identified and used for developing a protein-protein interaction (PPI) network using the STRING database. We found a significant overexpression of the mRNA levels of SKA1, SKA2, and SKA3 in patients with glioma patients. Higher expression of SKA1 and SKA3, but not SKA2, was significantly correlated with shorter overall survival of patients with glioma. In glioma, SKA complex was found to be involved in nuclear division, chromosome segregation, and DNA replication. The results of PPI network identified 10 hub genes (CCNB2, UBE2C, BUB1B, TPX2, CCNA2, CCNB1, MELK, TOP2A, PBK, and KIF11), all of which were overexpressed and negatively associated with prognosis of patients with glioma. In conclusion, our study sheds new insights into the biological role and prognostic significance of SKA complex in glioma.


Author(s):  
Evgeny Bakin ◽  
Fatih Sezer ◽  
Irem Kilic ◽  
Aslıhan Özbilen ◽  
Mike Rayko ◽  
...  

Apomictic plants (reproducing via asexual seeds), unlike sexual individuals, avoid meiosis and egg cell fertilization. Consequently, apomixis is very important for fixing maternal genotypes in the next plant generations. Despite the progress in the study of apomixis, molecular and genetic regulation of the latter remains poorly understood. So far APOLLO (Aspartate Glutamate Aspartate Aspartate histidine exonuclease) is the only described gene associated with apomixis in Boechera species. The centromere-specific histone H3 variant encoded by CENH3 gene is essential for cell division. Mutations in CENH3 disrupt chromosome segregation during mitosis and meiosis since the attachment of spindle microtubules to a mutated form of the CENH3 histone fails. This paper presents in silico characteristic of APOLLO and CENH3 genes, which may affect apomixis. Also, in this research we characterize the structure of CENH3, study expression levels of CENH3 and APOLLO in gynoecium/siliques of the natural diploid apomictic and sexual Boechera species at the stages of before and after fertilization. At the premeiotic stage, the expression level of CENH3 in the gynoecium of apomicts was two times lower than that of the sexual Boechera, it decreased in both species by the time of meiosis and increased after fertilization. By 1 DAP CENH3 expression started dropping in sexual B. stricta siliques and kept increasing in apomictic B. divaricarpa ones. That might indicate to a role of CENH3 in apomictic development in Boechera species. The expression levels of APOLLO also sharply decreased by the time of meiosis in gynoecium of both species; however, by 3 DAP, the level of APOLLO expression in siliques of apomicts was almost 1.5 times higher than that of the sexuals. While CENH3 was a single copy gene in all Boechera species, the APOLLO gene have several polymorphic alleles associated with sexual and apomictic reproduction in the Boechera genera. We also discuss polymorphism and phylogeny of the APOLLO and CENH3 genes.


1982 ◽  
Vol 93 (3) ◽  
pp. 655-669 ◽  
Author(s):  
D F Kubai

Light microscope descriptions of meiosis I in males of the fungus gnat Sciara coprophila suggested the presence of a monopolar spindle in which maternal and limited chromosomes move poleward while paternal chromosomes "back away" from the pole. The ultrastructural analysis reported here, based upon serial sections of cells in different stages of meiosis I, shows that the spindle is indeed monopolar with a distinctive differentiation, the polar complex, at one pole. This complex is the focus of a conical radiation of spindle microtubules. Kinetochores of paternal chromosomes face the complex and microtubules associated with these kinetochores run toward the complex. No kinetochore microtubules were discovered on maternal or limited chromosomes. When the position of paternal, maternal, and limited chromosomes is compared at various stages, it is found that limited chromosomes always remain near the polar complex, paternal chromosomes remain far from it and only maternal chromosomes move closer to the pole. Apparently, chromosome segregation does not depend on paternal chromosomes "backing away" from the pole, and the required movement of maternal chromosomes take place in the absence of kinetochore microtubules. In the prophase nucleus, limited and maternal chromosomes are already spatially separate from paternal chromosomes before the spindle forms. Thus, the monopolar spindle functions only to increase the distance between already segregated sets of chromosomes. An extensive system of microtubule-associated membranes outlines the spindle; the possibility that maternal chromosome movement is somehow related to the presence of this membrane is discussed.


2015 ◽  
Vol 210 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Kerstin Klare ◽  
John R. Weir ◽  
Federica Basilico ◽  
Tomasz Zimniak ◽  
Lucia Massimiliano ◽  
...  

Kinetochores are multisubunit complexes that assemble on centromeres to bind spindle microtubules and promote faithful chromosome segregation during cell division. A 16-subunit complex named the constitutive centromere–associated network (CCAN) creates the centromere–kinetochore interface. CENP-C, a CCAN subunit, is crucial for kinetochore assembly because it links centromeres with the microtubule-binding interface of kinetochores. The role of CENP-C in CCAN organization, on the other hand, had been incompletely understood. In this paper, we combined biochemical reconstitution and cellular investigations to unveil how CENP-C promotes kinetochore targeting of other CCAN subunits. The so-called PEST domain in the N-terminal half of CENP-C interacted directly with the four-subunit CCAN subcomplex CENP-HIKM. We identified crucial determinants of this interaction whose mutation prevented kinetochore localization of CENP-HIKM and of CENP-TW, another CCAN subcomplex. When considered together with previous observations, our data point to CENP-C as a blueprint for kinetochore assembly.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Christina C Muscat ◽  
Keila M Torre-Santiago ◽  
Michael V Tran ◽  
James A Powers ◽  
Sarah M Wignall

During cell division, chromosomes attach to spindle microtubules at sites called kinetochores, and force generated at the kinetochore-microtubule interface is the main driver of chromosome movement. Surprisingly, kinetochores are not required for chromosome segregation on acentrosomal spindles in Caenorhabditis elegans oocytes, but the mechanism driving chromosomes apart in their absence is not understood. In this study, we show that lateral microtubule–chromosome associations established during prometaphase remain intact during anaphase to facilitate separation, defining a novel form of kinetochore-independent segregation. Chromosome dynamics during congression and segregation are controlled by opposing forces; plus-end directed forces are mediated by a protein complex that forms a ring around the chromosome center and dynein on chromosome arms provides a minus-end force. At anaphase onset, ring removal shifts the balance between these forces, triggering poleward movement along lateral microtubule bundles. This represents an elegant strategy for controlling chromosomal movements during cell division distinct from the canonical kinetochore-driven mechanism.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Claudia Pellacani ◽  
Elisabetta Bucciarelli ◽  
Fioranna Renda ◽  
Daniel Hayward ◽  
Antonella Palena ◽  
...  

Several studies have shown that RNAi-mediated depletion of splicing factors (SFs) results in mitotic abnormalities. However, it is currently unclear whether these abnormalities reflect defective splicing of specific pre-mRNAs or a direct role of the SFs in mitosis. Here, we show that two highly conserved SFs, Sf3A2 and Prp31, are required for chromosome segregation in both Drosophila and human cells. Injections of anti-Sf3A2 and anti-Prp31 antibodies into Drosophila embryos disrupt mitotic division within 1 min, arguing strongly against a splicing-related mitotic function of these factors. We demonstrate that both SFs bind spindle microtubules (MTs) and the Ndc80 complex, which in Sf3A2- and Prp31-depleted cells is not tightly associated with the kinetochores; in HeLa cells the Ndc80/HEC1-SF interaction is restricted to the M phase. These results indicate that Sf3A2 and Prp31 directly regulate interactions among kinetochores, spindle microtubules and the Ndc80 complex in both Drosophila and human cells.


2020 ◽  
Vol 64 (2) ◽  
pp. 251-261
Author(s):  
Jessica E. Fellmeth ◽  
Kim S. McKim

Abstract While many of the proteins involved in the mitotic centromere and kinetochore are conserved in meiosis, they often gain a novel function due to the unique needs of homolog segregation during meiosis I (MI). CENP-C is a critical component of the centromere for kinetochore assembly in mitosis. Recent work, however, has highlighted the unique features of meiotic CENP-C. Centromere establishment and stability require CENP-C loading at the centromere for CENP-A function. Pre-meiotic loading of proteins necessary for homolog recombination as well as cohesion also rely on CENP-C, as do the main scaffolding components of the kinetochore. Much of this work relies on new technologies that enable in vivo analysis of meiosis like never before. Here, we strive to highlight the unique role of this highly conserved centromere protein that loads on to centromeres prior to M-phase onset, but continues to perform critical functions through chromosome segregation. CENP-C is not merely a structural link between the centromere and the kinetochore, but also a functional one joining the processes of early prophase homolog synapsis to late metaphase kinetochore assembly and signaling.


2018 ◽  
Vol 68 (2) ◽  
pp. 498-516
Author(s):  
Neil O'Sullivan

Of the hundreds of Greek common nouns and adjectives preserved in our MSS of Cicero, about three dozen are found written in the Latin alphabet as well as in the Greek. So we find, alongside συμπάθεια, also sympathia, and ἱστορικός as well as historicus. This sort of variation has been termed alphabet-switching; it has received little attention in connection with Cicero, even though it is relevant to subjects of current interest such as his bilingualism and the role of code-switching and loanwords in his works. Rather than addressing these issues directly, this discussion sets out information about the way in which the words are written in our surviving MSS of Cicero and takes further some recent work on the presentation of Greek words in Latin texts. It argues that, for the most part, coherent patterns and explanations can be found in the alphabetic choices exhibited by them, or at least by the earliest of them when there is conflict in the paradosis, and that this coherence is evidence for a generally reliable transmission of Cicero's original choices. While a lack of coherence might indicate unreliable transmission, or even an indifference on Cicero's part, a consistent pattern can only really be explained as an accurate record of coherent alphabet choice made by Cicero when writing Greek words.


Sign in / Sign up

Export Citation Format

Share Document