scholarly journals Spindle assembly checkpoint proteins are positioned close to core microtubule attachment sites at kinetochores

2013 ◽  
Vol 202 (5) ◽  
pp. 735-746 ◽  
Author(s):  
Dileep Varma ◽  
Xiaohu Wan ◽  
Dhanya Cheerambathur ◽  
Reto Gassmann ◽  
Aussie Suzuki ◽  
...  

Spindle assembly checkpoint proteins have been thought to reside in the peripheral corona region of the kinetochore, distal to microtubule attachment sites at the outer plate. However, recent biochemical evidence indicates that checkpoint proteins are closely linked to the core kinetochore microtubule attachment site comprised of the Knl1–Mis12–Ndc80 (KMN) complexes/KMN network. In this paper, we show that the Knl1–Zwint1 complex is required to recruit the Rod–Zwilch–Zw10 (RZZ) and Mad1–Mad2 complexes to the outer kinetochore. Consistent with this, nanometer-scale mapping indicates that RZZ, Mad1–Mad2, and the C terminus of the dynein recruitment factor Spindly are closely juxtaposed with the KMN network in metaphase cells when their dissociation is blocked and the checkpoint is active. In contrast, the N terminus of Spindly is ∼75 nm outside the calponin homology domain of the Ndc80 complex. These results reveal how checkpoint proteins are integrated within the substructure of the kinetochore and will aid in understanding the coordination of microtubule attachment and checkpoint signaling during chromosome segregation.

eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Ivana Primorac ◽  
John R Weir ◽  
Elena Chiroli ◽  
Fridolin Gross ◽  
Ingrid Hoffmann ◽  
...  

Regulation of macromolecular interactions by phosphorylation is crucial in signaling networks. In the spindle assembly checkpoint (SAC), which enables errorless chromosome segregation, phosphorylation promotes recruitment of SAC proteins to tensionless kinetochores. The SAC kinase Mps1 phosphorylates multiple Met-Glu-Leu-Thr (MELT) motifs on the kinetochore subunit Spc105/Knl1. The phosphorylated MELT motifs (MELTP) then promote recruitment of downstream signaling components. How MELTP motifs are recognized is unclear. In this study, we report that Bub3, a 7-bladed β-propeller, is the MELTP reader. It contains an exceptionally well-conserved interface that docks the MELTP sequence on the side of the β-propeller in a previously unknown binding mode. Mutations targeting the Bub3 interface prevent kinetochore recruitment of the SAC kinase Bub1. Crucially, they also cause a checkpoint defect, showing that recognition of phosphorylated targets by Bub3 is required for checkpoint signaling. Our data provide the first detailed mechanistic insight into how phosphorylation promotes recruitment of checkpoint proteins to kinetochores.


2021 ◽  
Vol 118 (20) ◽  
pp. e2022357118
Author(s):  
Handong Su ◽  
Yang Liu ◽  
Chunhui Wang ◽  
Yalin Liu ◽  
Chao Feng ◽  
...  

The Knl1-Mis12-Ndc80 (KMN) network is an essential component of the kinetochore–microtubule attachment interface, which is required for genomic stability in eukaryotes. However, little is known about plant Knl1 proteins because of their complex evolutionary history. Here, we cloned the Knl1 homolog from maize (Zea mays) and confirmed it as a constitutive central kinetochore component. Functional assays demonstrated their conserved role in chromosomal congression and segregation during nuclear division, thus causing defective cell division during kernel development when Knl1 transcript was depleted. A 145 aa region in the middle of maize Knl1, that did not involve the MELT repeats, was associated with the interaction of spindle assembly checkpoint (SAC) components Bub1/Mad3 family proteins 1 and 2 (Bmf1/2) but not with the Bmf3 protein. They may form a helical conformation with a hydrophobic interface with the TPR domain of Bmf1/2, which is similar to that of vertebrates. However, this region detected in monocots shows extensive divergence in eudicots, suggesting that distinct modes of the SAC to kinetochore connection are present within plant lineages. These findings elucidate the conserved role of the KMN network in cell division and a striking dynamic of evolutionary patterns in the SAC signaling and kinetochore network.


2005 ◽  
Vol 16 (2) ◽  
pp. 519-531 ◽  
Author(s):  
Jennifer G. DeLuca ◽  
Yimin Dong ◽  
Polla Hergert ◽  
Joshua Strauss ◽  
Jennifer M. Hickey ◽  
...  

A major goal in the study of vertebrate mitosis is to identify proteins that create the kinetochore-microtubule attachment site. Attachment sites within the kinetochore outer plate generate microtubule dependent forces for chromosome movement and regulate spindle checkpoint protein assembly at the kinetochore. The Ndc80 complex, comprised of Ndc80 (Hec1), Nuf2, Spc24, and Spc25, is essential for metaphase chromosome alignment and anaphase chromosome segregation. It has also been suggested to have roles in kinetochore microtubule formation, production of kinetochore tension, and the spindle checkpoint. Here we show that Nuf2 and Hec1 localize throughout the outer plate, and not the corona, of the vertebrate kinetochore. They are part of a stable “core” region whose assembly dynamics are distinct from other outer domain spindle checkpoint and motor proteins. Furthermore, Nuf2 and Hec1 are required for formation and/or maintenance of the outer plate structure itself. Fluorescence light microscopy, live cell imaging, and electron microscopy provide quantitative data demonstrating that Nuf2 and Hec1 are essential for normal kinetochore microtubule attachment. Our results indicate that Nuf2 and Hec1 are required for organization of stable microtubule plus-end binding sites in the outer plate that are needed for the sustained poleward forces required for biorientation at kinetochores.


2007 ◽  
Vol 177 (6) ◽  
pp. 1005-1015 ◽  
Author(s):  
Eric R. Griffis ◽  
Nico Stuurman ◽  
Ronald D. Vale

The eukaryotic spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores and prevents anaphase onset until all kinetochores are aligned on the metaphase plate. In higher eukaryotes, cytoplasmic dynein is involved in silencing the SAC by removing the checkpoint proteins Mad2 and the Rod–Zw10–Zwilch complex (RZZ) from aligned kinetochores (Howell, B.J., B.F. McEwen, J.C. Canman, D.B. Hoffman, E.M. Farrar, C.L. Rieder, and E.D. Salmon. 2001. J. Cell Biol. 155:1159–1172; Wojcik, E., R. Basto, M. Serr, F. Scaerou, R. Karess, and T. Hays. 2001. Nat. Cell Biol. 3:1001–1007). Using a high throughput RNA interference screen in Drosophila melanogaster S2 cells, we have identified a new protein (Spindly) that accumulates on unattached kinetochores and is required for silencing the SAC. After the depletion of Spindly, dynein cannot target to kinetochores, and, as a result, cells arrest in metaphase with high levels of kinetochore-bound Mad2 and RZZ. We also identified a human homologue of Spindly that serves a similar function. However, dynein's nonkinetochore functions are unaffected by Spindly depletion. Our findings indicate that Spindly is a novel regulator of mitotic dynein, functioning specifically to target dynein to kinetochores.


2020 ◽  
Vol 295 (43) ◽  
pp. 14666-14677
Author(s):  
Hazheen K. Shirnekhi ◽  
Jacob A. Herman ◽  
Patrick J. Paddison ◽  
Jennifer G. DeLuca

BuGZ is a kinetochore component that binds to and stabilizes Bub3, a key player in mitotic spindle assembly checkpoint signaling. Bub3 is required for kinetochore recruitment of Bub1 and BubR1, two proteins that have essential and distinct roles in the checkpoint. Both Bub1 and BubR1 localize to kinetochores through interactions with Bub3, which are mediated through conserved GLEBS domains in both Bub1 and BubR1. BuGZ also has a GLEBS domain, which is required for its kinetochore localization as well, presumably mediated through Bub3 binding. Although much is understood about the requirements for Bub1 and BubR1 interaction with Bub3 and kinetochores, much less is known regarding BuGZ's requirements. Here, we used a series of mutants to demonstrate that BuGZ kinetochore localization requires only its core GLEBS domain, which is distinct from the requirements for both Bub1 and BubR1. Furthermore, we found that the kinetics of Bub1, BubR1, and BuGZ loading to kinetochores differ, with BuGZ localizing prior to BubR1 and Bub1. To better understand how complexes containing Bub3 and its binding partners are loaded to kinetochores, we carried out size-exclusion chromatography and analyzed Bub3-containing complexes from cells under different spindle assembly checkpoint signaling conditions. We found that prior to kinetochore formation, Bub3 is complexed with BuGZ but not Bub1 or BubR1. Our results point to a model in which BuGZ stabilizes Bub3 and promotes Bub3 loading onto kinetochores in early mitosis, which, in turn, facilitates Bub1 and BubR1 kinetochore recruitment and spindle assembly checkpoint signaling.


2014 ◽  
Vol 205 (1) ◽  
pp. 202-215 ◽  
Author(s):  
Laetitia Paganelli ◽  
Marie-Cécile Caillaud ◽  
Michaël Quentin ◽  
Isabelle Damiani ◽  
Benjamin Govetto ◽  
...  

2013 ◽  
Author(s):  
Ivana Primorac ◽  
John R Weir ◽  
Elena Chiroli ◽  
Fridolin Gross ◽  
Ingrid Hoffmann ◽  
...  

2004 ◽  
Vol 15 (7) ◽  
pp. 3345-3356 ◽  
Author(s):  
Sylvie Tournier ◽  
Yannick Gachet ◽  
Vicky Buck ◽  
Jeremy S. Hyams ◽  
Jonathan B.A. Millar

In animal and yeast cells, the mitotic spindle is aligned perpendicularly to the axis of cell division. This ensures that sister chromatids are separated to opposite sides of the cytokinetic actomyosin ring. In fission yeast, spindle rotation is dependent upon the interaction of astral microtubules with the cortical actin cytoskeleton. In this article, we show that addition of Latrunculin A, which prevents spindle rotation, delays the separation of sister chromatids and anaphase promoting complex-mediated destruction of spindle-associated Securin and Cyclin B. Moreover, we find that whereas sister kinetochore pairs normally congress to the spindle midzone before anaphase onset, this congression is disrupted when astral microtubule contact with the actin cytoskeleton is disturbed. By analyzing the timing of kinetochore separation, we find that this anaphase delay requires the Bub3, Mad3, and Bub1 but not the Mad1 or Mad2 spindle assembly checkpoint proteins. In agreement with this, we find that Bub1 remains associated with kinetochores when spindles are mispositioned. These data indicate that, in fission yeast, astral microtubule contact with the medial cell cortex is monitored by a subset of spindle assembly checkpoint proteins. We propose that this checkpoint ensures spindles are properly oriented before anaphase takes place.


Sign in / Sign up

Export Citation Format

Share Document