scholarly journals Structure–function insights into direct lipid transfer between membranes by Mmm1–Mdm12 of ERMES

2017 ◽  
Vol 217 (3) ◽  
pp. 959-974 ◽  
Author(s):  
Shin Kawano ◽  
Yasushi Tamura ◽  
Rieko Kojima ◽  
Siqin Bala ◽  
Eri Asai ◽  
...  

The endoplasmic reticulum (ER)–mitochondrial encounter structure (ERMES) physically links the membranes of the ER and mitochondria in yeast. Although the ER and mitochondria cooperate to synthesize glycerophospholipids, whether ERMES directly facilitates the lipid exchange between the two organelles remains controversial. Here, we compared the x-ray structures of an ERMES subunit Mdm12 from Kluyveromyces lactis with that of Mdm12 from Saccharomyces cerevisiae and found that both Mdm12 proteins possess a hydrophobic pocket for phospholipid binding. However in vitro lipid transfer assays showed that Mdm12 alone or an Mmm1 (another ERMES subunit) fusion protein exhibited only a weak lipid transfer activity between liposomes. In contrast, Mdm12 in a complex with Mmm1 mediated efficient lipid transfer between liposomes. Mutations in Mmm1 or Mdm12 impaired the lipid transfer activities of the Mdm12–Mmm1 complex and furthermore caused defective phosphatidylserine transport from the ER to mitochondrial membranes via ERMES in vitro. Therefore, the Mmm1–Mdm12 complex functions as a minimal unit that mediates lipid transfer between membranes.

2021 ◽  
Author(s):  
Souade Ikhlef ◽  
Nicolas-Frédéric Lipp ◽  
Vanessa Delfosse ◽  
Nicolas Fuggetta ◽  
William Bourguet ◽  
...  

Several members of the oxysterol-binding protein-related proteins (ORPs)/oxysterol-binding homology (Osh) family exchange phosphatidylserine (PS) and phosphatidylinositol 4-phosphate (PI(4)P) at the endoplasmic reticulum/plasma membrane (PM) interface. It is unclear whether they preferentially exchange PS and PI(4)P with specific acyl chains to tune the features of the PM, whether they use phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) instead of PI(4)P for exchange processes and whether their activity is influenced by the association of PS with sterol in the PM. Here, we measured in vitro how the yeast Osh6p and human ORP8 transported diverse PS and PI(4)P subspecies, including major cellular species, between membranes. We established how their activity is impacted by the length and unsaturation degree of these lipids. Surprisingly, the speed at which they individually transfer these ligands inversely depends on their affinity for them. To be fast, the transfer of high-affinity ligands requires an exchange with a counterligand of equivalent affinity. Besides, we determined that Osh6p and ORP8 cannot use PI(4,5)P2 for intracellular lipid exchange, as they have a low affinity for this lipid compared to PI(4)P, and do not transfer more PS into sterol-rich membranes. This study provides insights into PS/PI(4)P exchangers and sets unanticipated rules on how the activity of lipid transfer proteins relates to their affinity for ligands.


2021 ◽  
Author(s):  
Beichen Xie ◽  
Styliani Panagiotou ◽  
Jing Cen ◽  
Patrick Gilon ◽  
Peter Bergsten ◽  
...  

Endoplasmic reticulum (ER) - plasma membrane (PM) contacts are sites of lipid exchange and Ca2+ transport, and both lipid transport proteins and Ca2+ channels specifically accumulate at these locations. In pancreatic β-cells, both lipid- and Ca2+ signaling are essential for insulin secretion. The recently characterized lipid transfer protein TMEM24 dynamically localize to ER-PM contact sites and provide phosphatidylinositol, a precursor of PI(4)P and PI(4,5)P2, to the plasma membrane. β-cells lacking TMEM24 exhibit markedly suppressed glucose-induced Ca2+ oscillations and insulin secretion but the underlying mechanism is not known. We now show that TMEM24 only weakly interact with the PM, and dissociates in response to both diacylglycerol and nanomolar elevations of cytosolic Ca2+. Release of TMEM24 into the bulk ER membrane also enables direct interactions with mitochondria, and we report that loss of TMEM24 results in excessive accumulation of Ca2+ in both the ER and mitochondria and in impaired mitochondria function.


2020 ◽  
Vol 56 (48) ◽  
pp. 6515-6518 ◽  
Author(s):  
Chilaluck C. Konkankit ◽  
James Lovett ◽  
Hugh H. Harris ◽  
Justin J. Wilson

An endoplasmic reticulum stress-inducing rhenium isonitrile complex was investigated for its axial ligand stability in living cells using X-ray fluorescence microscopy.


2004 ◽  
Vol 15 (11) ◽  
pp. 5021-5037 ◽  
Author(s):  
Mark Trautwein ◽  
Jörn Dengjel ◽  
Markus Schirle ◽  
Anne Spang

The small GTPase Arf1p is involved in different cellular processes that require its accumulation at specific cellular locations. The recruitment of Arf1p to distinct points of action might be achieved by association of Arf1p with different proteins. To identify new interactors of Arf1p, we performed an affinity chromatography with GTP- or GDP-bound Arf1p proteins. A new interactor of Arf1p-GTP was identified as Pab1p, which binds to the polyA-tail of mRNAs. Pab1p was found to associate with purified COPI-coated vesicles generated from Golgi membranes in vitro. The stability of the Pab1p–Arf1p complex depends on the presence of mRNA. Both symmetrically distributed mRNAs as well as the asymmetrically localized ASH1 mRNA are found in association with Arf1p. Remarkably, Arf1p and Pab1p are both required to restrict ASH1 mRNA to the bud tip. Arf1p and coatomer play an unexpected role in localizing mRNA independent and downstream of the SHE machinery. Hereby acts the SHE machinery in long-range mRNA transport, whereas COPI vesicles could act as short-range and localization vehicles. The endoplasmic reticulum (ER)–Golgi shuttle might be involved in concentrating mRNA at the ER.


2016 ◽  
Vol 113 (28) ◽  
pp. E4015-E4024 ◽  
Author(s):  
Yi-Chang Liu ◽  
Danica Galonić Fujimori ◽  
Jonathan S. Weissman

Our understanding of how the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery efficiently targets terminally misfolded proteins while avoiding the misidentification of nascent polypeptides and correctly folded proteins is limited. For luminal N-glycoproteins, demannosylation of their N-glycan to expose a terminal α1,6-linked mannose is necessary for their degradation via ERAD, but whether this modification is specific to misfolded proteins is unknown. Here we report that the complex of the mannosidase Htm1p and the protein disulfide isomerase Pdi1p (Htm1p–Pdi1p) acts as a folding-sensitive mannosidase for catalyzing this first committed step in Saccharomyces cerevisiae. We reconstitute this step in vitro with Htm1p–Pdi1p and model glycoprotein substrates whose structural states we can manipulate. We find that Htm1p–Pdi1p is a glycoprotein-specific mannosidase that preferentially targets nonnative glycoproteins trapped in partially structured states. As such, Htm1p–Pdi1p is suited to act as a licensing factor that monitors folding in the ER lumen and preferentially commits glycoproteins trapped in partially structured states for degradation.


1998 ◽  
Vol 18 (9) ◽  
pp. 4961-4970 ◽  
Author(s):  
Tracy Boswell Fulton ◽  
Elizabeth H. Blackburn

ABSTRACT Telomeres in the budding yeast Kluyveromyces lactisconsist of perfectly repeated 25-bp units, unlike the imprecise repeats at Saccharomyces cerevisiae telomeres and the short (6- to 8-bp) telomeric repeats found in many other eukaryotes. Telomeric DNA is synthesized by the ribonucleoprotein telomerase, which uses a portion of its RNA moiety as a template. K. lactistelomerase RNA, encoded by the TER1 gene, is ∼1.3 kb long and contains a 30-nucleotide templating domain, the largest ever examined. To examine the mechanism of polymerization by this enzyme, we identified and analyzed telomerase activity from K. lactiswhole-cell extracts. In this study, we exploited the length of the template and the precision of copying by K. lactistelomerase to examine primer elongation within one round of repeat synthesis. Under all in vitro conditions tested, K. lactistelomerase catalyzed only one round of repeat synthesis and remained bound to reaction products. We demonstrate that K. lactistelomerase polymerizes along the template in a discontinuous manner and stalls at two specific regions in the template. Increasing the amount of primer DNA-template RNA complementarity results in stalling, suggesting that the RNA-DNA hybrid is not unpaired during elongation in vitro and that lengthy duplexes hinder polymerization through particular regions of the template. We suggest that these observations provide an insight into the mechanism of telomerase and its regulation.


2004 ◽  
Vol 08 (08) ◽  
pp. 1009-1014 ◽  
Author(s):  
David Kessel

A variety of agents have now been identified that can selectively sensitize neoplastic cells and other tissues to light. This review classifies a group of photosensitizers according to their initial affinity for specific sub-cellular organelles in vitro, and describes the consequences of each major localization site with regard to direct tumor cell kill. Considerations pertinent to determinants of efficacy in animal models and in clinical applications are also pointed out. One consequence of photodynamic therapy leading to cell death involves photodamage to anti-apoptotic members of the Bcl-2. These proteins are located on the endoplasmic reticulum and mitochondrial membranes. Direct mitochondrial photodamage can also initiate apoptosis. Agents that target lysosomes can bring about apoptotic death via an indirect route, but this does not appear to limit their usefulness. Agents that target the plasma membrane can re-localize to the cytosol during irradiation and cause photodamage to elements of the apoptotic process, resulting in necrosis. Implications of these findings are discussed.


2021 ◽  
Author(s):  
Beichen Xie ◽  
Styliani Panagiotou ◽  
Jing Cen ◽  
Patrick Gilon ◽  
Peter Bergsten ◽  
...  

Endoplasmic reticulum (ER) - plasma membrane (PM) contacts are sites of lipid exchange and Ca2+ transport, and both lipid transport proteins and Ca2+ channels specifically accumulate at these locations. In pancreatic β-cells, both lipid- and Ca2+ signaling are essential for insulin secretion. The recently characterized lipid transfer protein TMEM24 dynamically localize to ER-PM contact sites and provide phosphatidylinositol, a precursor of PI(4)P and PI(4,5)P2, to the plasma membrane. β-cells lacking TMEM24 exhibit markedly suppressed glucose-induced Ca2+ oscillations and insulin secretion but the underlying mechanism is not known. We now show that TMEM24 only weakly interact with the PM, and dissociates in response to both diacylglycerol and nanomolar elevations of cytosolic Ca2+. Loss of TMEM24 results in hyper-accumulation of Ca2+ in the ER and in excess Ca2+ entry into mitochondria, with resulting impairment in glucose-stimulated ATP production.


Sign in / Sign up

Export Citation Format

Share Document