scholarly journals YAP and TAZ limit cytoskeletal and focal adhesion maturation to enable persistent cell motility

2019 ◽  
Vol 218 (4) ◽  
pp. 1369-1389 ◽  
Author(s):  
Devon E. Mason ◽  
Joseph M. Collins ◽  
James H. Dawahare ◽  
Trung Dung Nguyen ◽  
Yang Lin ◽  
...  

Cell migration initiates by traction generation through reciprocal actomyosin tension and focal adhesion reinforcement, but continued motility requires adaptive cytoskeletal remodeling and adhesion release. Here, we asked whether de novo gene expression contributes to this cytoskeletal feedback. We found that global inhibition of transcription or translation does not impair initial cell polarization or migration initiation, but causes eventual migratory arrest through excessive cytoskeletal tension and over-maturation of focal adhesions, tethering cells to their matrix. The transcriptional coactivators YAP and TAZ mediate this feedback response, modulating cell mechanics by limiting cytoskeletal and focal adhesion maturation to enable persistent cell motility and 3D vasculogenesis. Motile arrest after YAP/TAZ ablation was partially rescued by depletion of the YAP/TAZ-dependent myosin phosphatase regulator, NUAK2, or by inhibition of Rho-ROCK-myosin II. Together, these data establish a transcriptional feedback axis necessary to maintain a responsive cytoskeletal equilibrium and persistent migration.

2018 ◽  
Author(s):  
Devon E. Mason ◽  
James H. Dawahare ◽  
Trung Dung Nguyen ◽  
Yang Lin ◽  
Sherry L. Voytik-Harbin ◽  
...  

AbstractCell migration initiates by traction generation through reciprocal actomyosin tension and focal adhesion reinforcement, but continued motility requires adaptive cytoskeletal remodeling and adhesion release. Here, we asked whether de novo gene expression contributes to this cytoskeletal feedback. We found that global inhibition of transcription or translation does not impair initial cell polarization or migration initiation, but causes eventual migratory arrest through excessive cytoskeletal tension and over-maturation of focal adhesions, tethering cells to their matrix. The transcriptional co-activators YAP and TAZ mediate this feedback response, modulating cell mechanics by limiting cytoskeletal and focal adhesion maturation to enable persistent cell motility and 3D vasculogenesis. Motile arrest after YAP/TAZ ablation was partially rescued by depletion of the YAP/TAZ-dependent myosin phosphatase regulator, NUAK2, or by inhibition of Rho-ROCK-myosin II. Together, these data establish a transcriptional feedback axis necessary to maintain a responsive cytoskeletal equilibrium and persistent migration.


1998 ◽  
Vol 111 (5) ◽  
pp. 615-624 ◽  
Author(s):  
H. Xie ◽  
M.A. Pallero ◽  
K. Gupta ◽  
P. Chang ◽  
M.F. Ware ◽  
...  

A current model of growth factor-induced cell motility invokes integration of diverse biophysical processes required for cell motility, including dynamic formation and disruption of cell/substratum attachments along with extension of membrane protrusions. To define how these biophysical events are actuated by biochemical signaling pathways, we investigate here whether epidermal growth factor (EGF) induces disruption of focal adhesions in fibroblasts. We find that EGF treatment of NR6 fibroblasts presenting full-length WT EGF receptors (EGFR) reduces the fraction of cells presenting focal adhesions from approximately 60% to approximately 30% within 10 minutes. The dose dependency of focal adhesion disassembly mirrors that for EGF-enhanced cell motility, being noted at 0.1 nM EGF. EGFR kinase activity is required as cells expressing two kinase-defective EGFR constructs retain their focal adhesions in the presence of EGF. The short-term (30 minutes) disassembly of focal adhesions is reflected in decreased adhesiveness of EGF-treated cells to substratum. We further examine here known motility-associated pathways to determine whether these contribute to EGF-induced effects. We have previously demonstrated that phospholipase C(gamma) (PLCgamma) activation and mobilization of gelsolin from a plasma membrane-bound state are required for EGFR-mediated cell motility. In contrast, we find here that short-term focal adhesion disassembly is induced by a signaling-restricted truncated EGFR (c'973) which fails to activate PLCgamma or mobilize gelsolin. The PLC inhibitor U73122 has no effect on this process, nor is the actin severing capacity of gelsolin required as EGF treatment reduces focal adhesions in gelsolin-devoid fibroblasts, further supporting the contention that focal adhesion disassembly is signaled by a pathway distinct from that involving PLCgamma. Because both WT and c'973 EGFR activate the erk MAP kinase pathway, we additionally explore here this signaling pathway, not previously associated with growth factor-induced cell motility. Levels of the MEK inhibitor PD98059 that block EGF-induced mitogenesis and MAP kinase phosphorylation also abrogate EGF-induced focal adhesion disassembly and cell motility. In summary, we characterize for the first time the ability of EGFR kinase activity to directly stimulate focal adhesion disassembly and cell/substratum detachment, in relation to its ability to stimulate migration. Furthermore, we propose a model of EGF-induced motogenic cell responses in which the PLCgamma pathway stimulating cell motility is distinct from the MAP kinase-dependent signaling pathway leading to disassembly and reorganization of cell-substratum adhesion.


mBio ◽  
2021 ◽  
Author(s):  
Courtney M. Klappenbach ◽  
Nicholas M. Negretti ◽  
Jesse Aaron ◽  
Teng-Leong Chew ◽  
Michael E. Konkel

Campylobacter jejuni is a major foodborne pathogen that causes severe gastritis. We investigated the dynamics of focal adhesion structure and function in C. jejuni -infected epithelial cells.


1999 ◽  
Vol 146 (2) ◽  
pp. 389-404 ◽  
Author(s):  
Jianguo Gu ◽  
Masahito Tamura ◽  
Roumen Pankov ◽  
Erik H.J. Danen ◽  
Takahisa Takino ◽  
...  

Cell migration is modulated by regulatory molecules such as growth factors, oncogenes, and the tumor suppressor PTEN. We previously described inhibition of cell migration by PTEN and restoration of motility by focal adhesion kinase (FAK) and p130 Crk-associated substrate (p130Cas). We now report a novel pathway regulating random cell motility involving Shc and mitogen-activated protein (MAP) kinase, which is downmodulated by PTEN and additive to a FAK pathway regulating directional migration. Overexpression of Shc or constitutively activated MEK1 in PTEN- reconstituted U87-MG cells stimulated integrin- mediated MAP kinase activation and cell migration. Conversely, overexpression of dominant negative Shc inhibited cell migration; Akt appeared uninvolved. PTEN directly dephosphorylated Shc. The migration induced by FAK or p130Cas was directionally persistent and involved extensive organization of actin microfilaments and focal adhesions. In contrast, Shc or MEK1 induced a random type of motility associated with less actin cytoskeletal and focal adhesion organization. These results identify two distinct, additive pathways regulating cell migration that are downregulated by tumor suppressor PTEN: one involves Shc, a MAP kinase pathway, and random migration, whereas the other involves FAK, p130Cas, more extensive actin cytoskeletal organization, focal contacts, and directionally persistent cell motility. Integration of these pathways provides an intracellular mechanism for regulating the speed and the directionality of cell migration.


2018 ◽  
Author(s):  
Nilay Taneja ◽  
Abigail C. Neininger ◽  
Matthew R. Bersi ◽  
W. David Merryman ◽  
Dylan T. Burnette

AbstractForces generated by myofibrils within cardiomyocytes must be balanced by adhesion to the substrate and to other cardiomyocytes for proper heart function. Loss of this force balance results in cardiomyopathies that ultimately cause heart failure. How this force balance is first established during the assembly of myofibrils is poorly understood. Using human induced pluripotent stem cell derived cardiomyocytes, we show coupling of focal adhesions to myofibrils during early steps of de novo myofibrillogenesis is essential for myofibril maturation. We also establish a key role for Focal adhesion kinase (FAK), a known regulator of adhesion dynamics in non-muscle cells, in regulating focal adhesion dynamics in cardiomyocytes. Specifically, FAK inhibition increased the stability of vinculin in focal adhesions, allowing greater substrate coupling of assembling myofibrils. Furthermore, this coupling is critical for regulating myofibril tension and viscosity. Taken together, our findings uncover a fundamental mechanism regulating the maturation of myofibrils in human cardiomyocytes.


2018 ◽  
Author(s):  
Bertille Bance ◽  
Shailaja Seetharaman ◽  
Cécile Leduc ◽  
Batiste Boëda ◽  
Sandrine Etienne-Manneville

AbstractMicrotubules play a crucial role in mesenchymal migration by controlling cell polarity and the turnover of cell adhesive structures on the extracellular matrix. The polarized functions of microtubules imply that microtubules are locally regulated. Here, we investigated the regulation and role of two major tubulin post-translational modifications, acetylation and detyrosination, which have been associated with stable microtubules. Using primary astrocytes in a wound healing assay, we show that these tubulin modifications are independently regulated during cell polarization and differently affect cell migration. In contrast to microtubule detyrosination, αTAT1-mediated microtubule acetylation increases in the vicinity of focal adhesions and promotes cell migration. We further demonstrate that αTAT1 increases focal adhesion turnover by promoting Rab6-positive vesicle fusion at focal adhesions. Our results highlight the specificity of microtubule post-translational modifications and bring new insight into the regulatory functions of tubulin acetylation.


2010 ◽  
Vol 21 (19) ◽  
pp. 3362-3375 ◽  
Author(s):  
Gerald Burgstaller ◽  
Martin Gregor ◽  
Lilli Winter ◽  
Gerhard Wiche

Focal adhesions (FAs) located at the ends of actin/myosin-containing contractile stress fibers form tight connections between fibroblasts and their underlying extracellular matrix. We show here that mature FAs and their derivative fibronectin fibril-aligned fibrillar adhesions (FbAs) serve as docking sites for vimentin intermediate filaments (IFs) in a plectin isoform 1f (P1f)-dependent manner. Time-lapse video microscopy revealed that FA-associated P1f captures mobile vimentin filament precursors, which then serve as seeds for de novo IF network formation via end-to-end fusion with other mobile precursors. As a consequence of IF association, the turnover of FAs is reduced. P1f-mediated IF network formation at FbAs creates a resilient cage-like core structure that encases and positions the nucleus while being stably connected to the exterior of the cell. We show that the formation of this structure affects cell shape with consequences for cell polarization.


1999 ◽  
Vol 276 (6) ◽  
pp. C1271-C1281 ◽  
Author(s):  
Michael S. Goligorsky ◽  
Husna Abedi ◽  
Eisei Noiri ◽  
Alice Takhtajan ◽  
Sheri Lense ◽  
...  

A permissive role of nitric oxide (NO) in endothelial cell migration and angiogenesis promoted by vascular endothelial growth factor (VEGF), endothelin, and substance P has previously been established. The present studies were designed to examine the mechanism(s) involved in the NO effect on focal adhesions. Time-lapse videomicroscopy of human umbilical vein endothelial cells (HUVECs) plated on the silicone rubber substrate revealed that unstimulated cells were constantly remodeling the wrinkling pattern, indicative of changing tractional forces. Application of NO donors reversibly decreased the degree of wrinkling, consistent with the release of tractional forces exerted by focal adhesions and stress fibers. Morphometric and immunocytochemical analyses showed that NO inhibited adhesion and spreading of HUVECs and attenuated recruitment of paxillin to focal adhesions. NO also had a profound dose-dependent effect on the formation of stress fibers by HUVECs. De novo formation of focal adhesions in HUVECs was significantly diminished in the presence of NO donors. Migration of HUVECs showed an absolute requirement for the functional NO synthase. NO donors did not interfere with focal adhesion kinase recruitment to focal adhesions but affected the state of its tyrosine phosphorylation, as judged from the results of immunoprecipitation and immunoblotting experiments. Videomicroscopy of HUVECs presented with VEGF in a micropipette showed that the rate of cell migration was slowed down by NO synthase inhibition as well as by inhibition of tyrosine phosphorylation. Collectively, these data indicate that NO reversibly releases tractional forces exerted by spreading endothelial cells via interference with the de novo formation of focal adhesions, tyrosine phosphorylation of components of focal adhesion complexes, and assembly of stress fibers.


2015 ◽  
Vol 26 (4) ◽  
pp. 622-635 ◽  
Author(s):  
Whitney M. Cleghorn ◽  
Kevin M. Branch ◽  
Seunghyi Kook ◽  
Christopher Arnette ◽  
Nada Bulus ◽  
...  

Focal adhesions (FAs) play a key role in cell attachment, and their timely disassembly is required for cell motility. Both microtubule-dependent targeting and recruitment of clathrin are critical for FA disassembly. Here we identify nonvisual arrestins as molecular links between microtubules and clathrin. Cells lacking both nonvisual arrestins showed excessive spreading on fibronectin and poly-d-lysine, increased adhesion, and reduced motility. The absence of arrestins greatly increases the size and lifespan of FAs, indicating that arrestins are necessary for rapid FA turnover. In nocodazole washout assays, FAs in arrestin-deficient cells were unresponsive to disassociation or regrowth of microtubules, suggesting that arrestins are necessary for microtubule targeting–dependent FA disassembly. Clathrin exhibited decreased dynamics near FA in arrestin-deficient cells. In contrast to wild-type arrestins, mutants deficient in clathrin binding did not rescue the phenotype. Collectively the data indicate that arrestins are key regulators of FA disassembly linking microtubules and clathrin.


2006 ◽  
Vol 26 (12) ◽  
pp. 4399-4409 ◽  
Author(s):  
Myeong Gu Yeo ◽  
Michael A. Partridge ◽  
Ellen J. Ezratty ◽  
Qiong Shen ◽  
Gregg G. Gundersen ◽  
...  

ABSTRACT Src kinase is a crucial mediator of adhesion-related signaling and motility. Src binds to focal adhesion kinase (FAK) through its SH2 domain and subsequently activates it for phosphorylation of downstream substrates. In addition to this binding function, data suggested that the SH2 domain might also perform an important role in targeting Src to focal adhesions (FAs) to enable further substrate phosphorylations. To examine this, we engineered an R175L mutation in cSrc to prevent the interaction with FAK pY397. This constitutively open Src kinase mediated up-regulated substrate phosphorylation in SYF cells but was unable to promote malignant transformation. Significantly, SrcR175L cells also had a profound motility defect and an impaired FA generation capacity. Importantly, we were able to recapitulate wild-type motile behavior and FA formation by directing the kinase to FAs, clearly implicating the SH2 domain in recruitment to FAK and indicating that this targeting capacity, and not simply Src-FAK scaffolding, was critical for normal Src function.


Sign in / Sign up

Export Citation Format

Share Document