scholarly journals CRACR2a is a calcium-activated dynein adaptor protein that regulates endocytic traffic

2019 ◽  
Vol 218 (5) ◽  
pp. 1619-1633 ◽  
Author(s):  
Yuxiao Wang ◽  
Walter Huynh ◽  
Taylor D. Skokan ◽  
Wen Lu ◽  
Arthur Weiss ◽  
...  

Cytoplasmic dynein is a minus end–directed microtubule motor that transports intracellular cargoes. Transport is initiated by coiled-coil adaptors that (a) join dynein and its cofactor dynactin into a motile complex and (b) interact with a cargo-bound receptor, which is frequently a Rab GTPase on an organelle. Here, we report two novel dynein adaptors, CRACR2a and Rab45, that have a coiled-coil adaptor domain, a pair of EF-hands, and a Rab GTPase fused into a single polypeptide. CRACR2a-mediated, but not Rab45-mediated, dynein motility is activated by calcium in vitro. In Jurkat T cells, elevation of intracellular calcium activates CRACR2a-mediated dynein transport. We further found that T cell receptor activation induces the formation of CRACR2a puncta at the plasma membrane, which initially associate with the actin cortex and subsequently detach and travel along microtubules, suggestive of an endocytic process. These results provide the first examples of Rab GTPases that directly act as dynein adaptors and implicate CRACR2a–dynein in calcium-regulated endocytic trafficking.

2018 ◽  
Author(s):  
Yuxiao Wang ◽  
Walter Huynh ◽  
Taylor D. Skokan ◽  
Ronald D. Vale

AbstractCytoplasmic dynein is a microtubule minus-end-directed motor that transports numerous intracellular cargoes. Mammalian dynein transport is initiated by coiled-coil adaptor proteins that 1) join dynein and its co-factor dynactin into a complex capable of processive motility, and 2) interact with a cargo-bound receptor, which is frequently a Rab GTPase on an organelle. Here, we report two novel dynein adaptors, CRACR2a and Rab45, which have a coiled-coil adaptor domain, a pair of EF hands, and a Rab GTPase domain fused into a single polypeptide. We find that CRACR2a-mediated dynein-dynactin motility is activated by calcium in vitro and in cells. In activated T cells, CRACR2a localizes to clathrin-independent endosomes that require microtubule-based transport to detach from the actin cortex and travel towards the microtubule organizing center. Together these results represent the first known examples of Rab GTPases that directly act as dynein adaptors and implicate CRACR2a-dynein in regulation of endocytic trafficking in T cells.


2017 ◽  
Author(s):  
Kuo-Fu Tseng ◽  
Pan Wang ◽  
Yuh-Ru Julie Lee ◽  
Joel Bowen ◽  
Allison M. Gicking ◽  
...  

AbstractIn animals and fungi, cytoplasmic dynein is a processive motor that plays dominant roles in various intracellular processes. In contrast, land plants lack cytoplasmic dynein but contain many minus-end-directed kinesin-14s. No plant kinesin-14 is known to produce processive motility as a homodimer. OsKCH2 is a plant-specific kinesin-14 with an N-terminal actin-binding domain and a central motor domain flanked by two predicted coiled-coils (CC1 and CC2). Here, we show that OsKCH2 specifically decorates preprophase band microtubules in vivo and transports actin filaments along microtubules in vitro. Importantly, OsKCH2 exhibits processive minus-end-directed motility on single microtubules as individual homodimers. We find that CC1 but not CC2 forms the coiled-coil for OsKCH2 dimerization. Instead, CC2 functions to enable OsKCH2 processivity by enhancing its binding to microtubules. Collectively, these results show that land plants have evolved unconventional kinesin-14 homodimers with inherent minus-end-directed processivity that may function to compensate for the loss of cytoplasmic dynein.


2005 ◽  
Vol 25 (6) ◽  
pp. 2364-2383 ◽  
Author(s):  
Rüdiger Arnold ◽  
Irene M. Patzak ◽  
Brit Neuhaus ◽  
Sadia Vancauwenbergh ◽  
André Veillette ◽  
...  

ABSTRACT Adaptive immune signaling can be coupled to stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and NF-κB activation by the hematopoietic progenitor kinase 1 (HPK1), a mammalian hematopoiesis-specific Ste20 kinase. To gain insight into the regulation of leukocyte signal transduction, we investigated the molecular details of HPK1 activation. Here we demonstrate the capacity of the Src family kinase Lck and the SLP-76 family adaptor protein Clnk (cytokine-dependent hematopoietic cell linker) to induce HPK1 tyrosine phosphorylation and relocation to the plasma membrane, which in lymphocytes results in recruitment of HPK1 to the contact site of antigen-presenting cell (APC)-T-cell conjugates. Relocation and clustering of HPK1 cause its enzymatic activation, which is accompanied by phosphorylation of regulatory sites in the HPK1 kinase activation loop. We show that full activation of HPK1 is dependent on autophosphorylation of threonine 165 and phosphorylation of serine 171, which is a target site for protein kinase D (PKD) in vitro. Upon T-cell receptor stimulation, PKD robustly augments HPK1 kinase activity in Jurkat T cells and enhances HPK1-driven SAPK/JNK and NF-κB activation; conversely, antisense down-regulation of PKD results in reduced HPK1 activity. Thus, activation of major lymphocyte signaling pathways via HPK1 involves (i) relocation, (ii) autophosphorylation, and (iii) transphosphorylation of HPK1 by PKD.


2011 ◽  
Vol 22 (2) ◽  
pp. 230-244 ◽  
Author(s):  
Marion Weber-Boyvat ◽  
Nina Aro ◽  
Konstantin G. Chernov ◽  
Tuula Nyman ◽  
Jussi Jäntti

The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658–724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2–1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1–657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1–657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p.


2014 ◽  
Vol 211 (13) ◽  
pp. 2519-2535 ◽  
Author(s):  
James M. Kennedy ◽  
Nassima Fodil ◽  
Sabrina Torre ◽  
Silayuv E. Bongfen ◽  
Jean-Frédéric Olivier ◽  
...  

We used a genome-wide screen in mutagenized mice to identify genes which inactivation protects against lethal neuroinflammation during experimental cerebral malaria (ECM). We identified an ECM-protective mutation in coiled-coil domain containing protein 88b (Ccdc88b), a poorly annotated gene that is found expressed specifically in spleen, bone marrow, lymph nodes, and thymus. The CCDC88B protein is abundantly expressed in immune cells, including both CD4+ and CD8+ T lymphocytes, and in myeloid cells, and loss of CCDC88B protein expression has pleiotropic effects on T lymphocyte functions, including impaired maturation in vivo, significantly reduced activation, reduced cell division as well as impaired cytokine production (IFN-γ and TNF) in response to T cell receptor engagement, or to nonspecific stimuli in vitro, and during the course of P. berghei infection in vivo. This identifies CCDC88B as a novel and important regulator of T cell function. The human CCDC88B gene maps to the 11q13 locus that is associated with susceptibility to several inflammatory and auto-immune disorders. Our findings strongly suggest that CCDC88B is the morbid gene underlying the pleiotropic effect of the 11q13 locus on inflammation.


2000 ◽  
Vol 113 (20) ◽  
pp. 3663-3671 ◽  
Author(s):  
M. Schrader ◽  
S.J. King ◽  
T.A. Stroh ◽  
T.A. Schroer

We have directly imaged the dynamic behavior of a variety of morphologically different peroxisomal structures in HepG2 and COS-7 cells transfected with a construct encoding GFP bearing the C-terminal peroxisomal targeting signal 1. Real time imaging revealed that moving peroxisomes interacted with each other and were engaged in transient contacts, and at higher magnification, tubular peroxisomes appeared to form a peroxisomal reticulum. Local remodeling of these structures could be observed involving the formation and detachment of tubular processes that interconnected adjacent organelles. Inhibition of cytoplasmic dynein based motility by overexpression of the dynactin subunit, dynamitin (p50), inhibited the movement of peroxisomes in vivo and interfered with the reestablishment of a uniform distribution of peroxisomes after recovery from nocodazole treatment. Isolated peroxisomes moved in vitro along microtubules in the presence of a microtubule motor fraction. Our data reveal that peroxisomal behavior in vivo is significantly more dynamic and interactive than previously thought and suggest a role for the dynein/dynactin motor in peroxisome motility.


2020 ◽  
Vol 8 (5) ◽  
pp. 729
Author(s):  
Asuka Nanbo

Herpesvirus egress mechanisms are strongly associated with intracellular compartment remodeling processes. Previously, we and other groups have described that intracellular compartments derived from the Golgi apparatus are the maturation sites of Epstein-Barr virus (EBV) virions. However, the mechanism by which these virions are released from the host cell to the extracellular milieu is poorly understood. Here, I adapted two independent induction systems of the EBV lytic cycle in vitro, in the context of Rab GTPase silencing, to characterize the EBV release pathway. Immunofluorescence staining revealed that p350/220, the major EBV glycoprotein, partially co-localized with three Rab GTPases: Rab8a, Rab10, and Rab11a. Furthermore, the knockdown of these Rab GTPases promoted the intracellular accumulation of viral structural proteins by inhibiting its distribution to the plasma membrane. Finally, the knockdown of the Rab8a, Rab10, and Rab11a proteins suppressed the release of EBV infectious virions. Taken together, these findings support the hypothesis that mature EBV virions are released from infected cells to the extracellular milieu via the secretory pathway, as well as providing new insights into the EBV life cycle.


1991 ◽  
Vol 115 (6) ◽  
pp. 1639-1650 ◽  
Author(s):  
S R Gill ◽  
T A Schroer ◽  
I Szilak ◽  
E R Steuer ◽  
M P Sheetz ◽  
...  

Although cytoplasmic dynein is known to attach to microtubules and translocate toward their minus ends, dynein's ability to serve in vitro as a minus end-directed transporter of membranous organelles depends on additional soluble factors. We show here that a approximately 20S polypeptide complex (referred to as Activator I; Schroer, T. A., and M.P. Sheetz. 1991a. J. Cell Biol. 115:1309-1318.) stimulates dynein-mediated vesicle transport. A major component of the activator complex is a doublet of 150-kD polypeptides for which we propose the name dynactin (for dynein activator). The 20S dynactin complex is required for in vitro vesicle motility since depletion of it with a mAb to dynactin eliminates vesicle movement. Cloning of a brain specific isoform of dynactin from chicken reveals a 1,053 amino acid polypeptide composed of two coiled-coil alpha-helical domains interrupted by a spacer. Both this structural motif and the underlying primary sequence are highly conserved in vertebrates with 85% sequence identity within a central 1,000-residue domain of the chicken and rat proteins. As abundant as dynein, dynactin is ubiquitously expressed and appears to be encoded by a single gene that yields at least three alternative isoforms. The probable homologue in Drosophila is the gene Glued, whose protein product shares 50% sequence identity with vertebrate dynactin and whose function is essential for viability of most (and perhaps all) cells in the organism.


1997 ◽  
Vol 17 (10) ◽  
pp. 5952-5959 ◽  
Author(s):  
A Philips ◽  
M Maira ◽  
A Mullick ◽  
M Chamberland ◽  
S Lesage ◽  
...  

Two important functions of glucocorticoids (Gc), namely, suppression of immune system function and feedback repression of the hypothalamo-pituitary-adrenal (HPA) axis, are mediated through repression of gene transcription. Previous studies have indicated that this repression is exerted in part through antagonism between the glucocorticoid receptors (GR) and the AP-1 family of transcription factors. However, this mechanism could not account for repression of the pro-opiomelanocortin (POMC) gene, an important regulator of the HPA axis. Our recent identification of the orphan nuclear receptor Nur77 as a mediator of CRH induction of POMC transcription led us, in the present work, to show that Gc antagonize this positive signal at two levels. First, Gc partly blunt the CRH induction of Nur77 mRNA, and second, they antagonize Nur77-dependent transcription. GR repression is exerted by antagonism of Nur77 action on the NurRE element of the POMC gene. Gc antagonism of NurRE activity was observed in response to physiological stimuli in both endocrine (CRH induction of POMC) and lymphoid (T-cell receptor activation) cells. In transfection experiments, transcriptional activation by Nur77 and the repressor activity of liganded GR titrated each other on their cognate DNA target. In vitro binding experiments as well as mutation analysis of GR suggest that the mechanism of GR antagonism of Nur77 is very similar to that of the antagonism between GR and AP-1. The convergence of positive signals mediated by Nur77 (and also probably by related family members) and negative signals exerted by GR appears to be a general mechanism for control of transcription, since it is active in both endocrine and lymphoid cells.


Sign in / Sign up

Export Citation Format

Share Document