scholarly journals Distinct roles for dynein light intermediate chains in neurogenesis, migration, and terminal somal translocation

2019 ◽  
Vol 218 (3) ◽  
pp. 808-819 ◽  
Author(s):  
João Carlos Gonçalves ◽  
Tiago J. Dantas ◽  
Richard B. Vallee

Cytoplasmic dynein participates in multiple aspects of neocortical development. These include neural progenitor proliferation, morphogenesis, and neuronal migration. The cytoplasmic dynein light intermediate chains (LICs) 1 and 2 are cargo-binding subunits, though their relative roles are not well understood. Here, we used in utero electroporation of shRNAs or LIC functional domains to determine the relative contributions of the two LICs in the developing rat brain. We find that LIC1, through BicD2, is required for apical nuclear migration in neural progenitors. In newborn neurons, we observe specific roles for LIC1 in the multipolar to bipolar transition and glial-guided neuronal migration. In contrast, LIC2 contributes to a novel dynein role in the little-studied mode of migration, terminal somal translocation. Together, our results provide novel insight into the LICs’ unique functions during brain development and dynein regulation overall.

Open Biology ◽  
2018 ◽  
Vol 8 (6) ◽  
pp. 170202 ◽  
Author(s):  
Sirong Ou ◽  
Mei-Hua Tan ◽  
Ting Weng ◽  
HoiYeung Li ◽  
Cheng-Gee Koh

Abnormal centrosome number and function have been implicated in tumour development. LIM kinase1 (LIMK1), a regulator of actin cytoskeleton dynamics, is found to localize at the mitotic centrosome. However, its role at the centrosome is not fully explored. Here, we report that LIMK1 depletion resulted in multi-polar spindles and defocusing of centrosomes, implicating its involvement in the regulation of mitotic centrosome integrity. LIMK1 could influence centrosome integrity by modulating centrosomal protein localization at the spindle pole. Interestingly, dynein light intermediate chains (LICs) are able to rescue the defects observed in LIMK1-depleted cells. We found that LICs are potential novel interacting partners and substrates of LIMK1 and that LIMK1 phosphorylation regulates cytoplasmic dynein function in centrosomal protein transport, which in turn impacts mitotic spindle pole integrity.


2014 ◽  
Vol 207 (4) ◽  
pp. 499-516 ◽  
Author(s):  
Laura A. Jones ◽  
Cécile Villemant ◽  
Toby Starborg ◽  
Anna Salter ◽  
Georgina Goddard ◽  
...  

Cytoplasmic dynein 1 (dynein) is a minus end–directed microtubule motor protein with many cellular functions, including during cell division. The role of the light intermediate chains (LICs; DYNC1LI1 and 2) within the complex is poorly understood. In this paper, we have used small interfering RNAs or morpholino oligonucleotides to deplete the LICs in human cell lines and Xenopus laevis early embryos to dissect the LICs’ role in cell division. We show that although dynein lacking LICs drives microtubule gliding at normal rates, the LICs are required for the formation and maintenance of a bipolar spindle. Multipolar spindles with poles that contain single centrioles were formed in cells lacking LICs, indicating that they are needed for maintaining centrosome integrity. The formation of multipolar spindles via centrosome splitting after LIC depletion could be rescued by inhibiting Eg5. This suggests a novel role for the dynein complex, counteracted by Eg5, in the maintenance of centriole cohesion during mitosis.


2011 ◽  
Vol 22 (4) ◽  
pp. 467-477 ◽  
Author(s):  
Serena C. Tan ◽  
Julian Scherer ◽  
Richard B. Vallee

Cytoplasmic dynein is involved in a wide range of cellular processes, but how it is regulated and how it recognizes an extremely wide range of cargo are incompletely understood. The dynein light intermediate chains, LIC1 and LIC2 (DYNC1LI1 and DYNC1LI2, respectively), have been implicated in cargo binding, but their full range of functions is unknown. Using LIC isoform-specific antibodies, we report the first characterization of their subcellular distribution and identify a specific association with elements of the late endocytic pathway, but not other vesicular compartments. LIC1 and LIC2 RNA interference (RNAi) each specifically disrupts the distribution of lysosomes and late endosomes. Stimulation of dynein-mediated late-endosomal transport by the Rab7-interacting lysosomal protein (RILP) is reversed by LIC1 RNAi, which displaces dynein, but not dynactin, from these structures. Conversely, expression of ΔN-RILP or the dynactin subunit dynamitin each fails to displace dynein, but not dynactin. Thus, using a variety of complementary approaches, our results indicate a novel specific role for the LICs in dynein recruitment to components of the late endocytic pathway.


1996 ◽  
Vol 7 (2) ◽  
pp. 331-343 ◽  
Author(s):  
K K Pfister ◽  
M W Salata ◽  
J F Dillman ◽  
E Torre ◽  
R J Lye

Cytoplasmic dynein is the microtubule minus-end-directed motor for the retrograde axonal transport of membranous organelles. Because of its similarity to the intermediate chains of flagellar dynein, the 74-kDa intermediate chain (IC74) subunit of dynein is thought to be involved in binding dynein to its membranous organelle cargo. Previously, we identified six isoforms of the IC74 cytoplasmic dynein subunit in the brain. We further demonstrated that cultured glia and neurons expressed different dynein IC74 isoforms and phospho-isoforms. Two isoforms were observed when dynein from glia was analyzed. When dynein from cultured neurons was analyzed, six IC74 isoforms were observed, although the relative amounts of the dynein isoforms from cultured neurons differed from those found in dynein from brain. To better understand the role of the neuronal IC74 isoforms and identify neuron-specific IC74 dynein subunits, the expression of the IC74 protein isoforms and mRNAs of various tissues were compared. As a result of this comparison, the identity of each of the isoform spots observed on two-dimensional gels was correlated with the products of each of the IC74 mRNAs. We also found that between the fifteenth day of gestation (E15) and the fifth day after birth (P5), the relative expression of the IC74 protein isoforms changes, demonstrating that the expression of IC74 isoforms is developmentally regulated in brain. During this time period, there is relatively little change in the abundance of the various IC74 mRNAs. The E15 to P5 time period is one of rapid process extension and initial pattern formation in the rat brain. This result indicates that the changes in neuronal IC74 isoforms coincide with neuronal differentiation, in particular the extension of processes. This suggests a role for the neuronal IC74 isoforms in the establishment or regulation of retrograde axonal transport.


2011 ◽  
Vol 22 (15) ◽  
pp. 2690-2701 ◽  
Author(s):  
Melissa D. Stuchell-Brereton ◽  
Amanda Siglin ◽  
Jun Li ◽  
Jeffrey K. Moore ◽  
Shubbir Ahmed ◽  
...  

Cytoplasmic dynein is a large multisubunit complex involved in retrograde transport and the positioning of various organelles. Dynein light chain (LC) subunits are conserved across species; however, the molecular contribution of LCs to dynein function remains controversial. One model suggests that LCs act as cargo-binding scaffolds. Alternatively, LCs are proposed to stabilize the intermediate chains (ICs) of the dynein complex. To examine the role of LCs in dynein function, we used Saccharomyces cerevisiae, in which the sole function of dynein is to position the spindle during mitosis. We report that the LC8 homologue, Dyn2, localizes with the dynein complex at microtubule ends and interacts directly with the yeast IC, Pac11. We identify two Dyn2-binding sites in Pac11 that exert differential effects on Dyn2-binding and dynein function. Mutations disrupting Dyn2 elicit a partial loss-of-dynein phenotype and impair the recruitment of the dynein activator complex, dynactin. Together these results indicate that the dynein-based function of Dyn2 is via its interaction with the dynein IC and that this interaction is important for the interaction of dynein and dynactin. In addition, these data provide the first direct evidence that LC occupancy in the dynein motor complex is important for function.


Development ◽  
2020 ◽  
Vol 147 (14) ◽  
pp. dev187310
Author(s):  
Yasuki Naito ◽  
Naoyuki Asada ◽  
Minh Dang Nguyen ◽  
Kamon Sanada

ABSTRACTThe microtubule motor cytoplasmic dynein contributes to radial migration of newborn pyramidal neurons in the developing neocortex. Here, we show that AMP-activated protein kinase (AMPK) mediates the nucleus-centrosome coupling, a key process for radial neuronal migration that relies on dynein. Depletion of the catalytic subunit of AMPK in migrating neurons impairs this coupling as well as neuronal migration. AMPK shows overlapping subcellular distribution with cytoplasmic dynein and the two proteins interact with each other. Pharmacological inhibition or activation of AMPK modifies the phosphorylation states of dynein intermediate chain (DIC) and dynein functions. Furthermore, AMPK phosphorylates DIC at Ser81. Expression of a phospho-resistant mutant of DIC retards neuronal migration in a similar way to AMPK depletion. Conversely, expression of the phospho-mimetic mutant of DIC alleviates impaired neuronal migration caused by AMPK depletion. Thus, AMPK-regulated dynein function via Ser81 DIC phosphorylation is crucial for radial neuronal migration.


Science ◽  
2018 ◽  
Vol 359 (6376) ◽  
pp. 658-662 ◽  
Author(s):  
Gregor-Alexander Pilz ◽  
Sara Bottes ◽  
Marion Betizeau ◽  
David J. Jörg ◽  
Stefano Carta ◽  
...  

Neural stem and progenitor cells (NSPCs) generate neurons throughout life in the mammalian hippocampus. We used chronic in vivo imaging and followed genetically labeled individual NSPCs and their progeny in the mouse hippocampus for up to 2 months. We show that NSPCs targeted by the endogenous Achaete-scute homolog 1 (Ascl1) promoter undergo limited rounds of symmetric and asymmetric divisions, eliciting a burst of neurogenic activity, after which they are lost. Further, our data reveal unexpected asymmetric divisions of nonradial glia-like NSPCs. Cell fates of Ascl1-labeled lineages suggest a developmental-like program involving a sequential transition from a proliferative to a neurogenic phase. By providing a comprehensive description of lineage relationships, from dividing NSPCs to newborn neurons integrating into the hippocampal circuitry, our data offer insight into how NSPCs support life-long hippocampal neurogenesis.


2014 ◽  
Vol 25 (14) ◽  
pp. 2171-2180 ◽  
Author(s):  
Frances Ka Yan Cheong ◽  
Lijuan Feng ◽  
Ali Sarkeshik ◽  
John R. Yates ◽  
Trina A. Schroer

Dynactin is a multiprotein complex that works with cytoplasmic dynein and other motors to support a wide range of cell functions. It serves as an adaptor that binds both dynein and cargoes and enhances single-motor processivity. The dynactin subunit dynamitin (also known as p50) is believed to be integral to dynactin structure because free dynamitin displaces the dynein-binding p150Glued subunit from the cargo-binding Arp1 filament. We show here that the intrinsically disordered dynamitin N-terminus binds to Arp1 directly. When expressed in cells, dynamitin amino acids (AA) 1–87 causes complete release of endogenous dynamitin, p150, and p24 from dynactin, leaving behind Arp1 filaments carrying the remaining dynactin subunits (CapZ, p62, Arp11, p27, and p25). Tandem-affinity purification–tagged dynamitin AA 1–87 binds the Arp filament specifically, and binding studies with purified native Arp1 reveal that this fragment binds Arp1 directly. Neither CapZ nor the p27/p25 dimer contributes to interactions between dynamitin and the Arp filament. This work demonstrates for the first time that Arp1 can directly bind any protein besides another Arp and provides important new insight into the underpinnings of dynactin structure.


Sign in / Sign up

Export Citation Format

Share Document