scholarly journals A tensile trilayered cytoskeletal endotube drives capillary-like lumenogenesis

2019 ◽  
Vol 218 (7) ◽  
pp. 2403-2424 ◽  
Author(s):  
Liakot A. Khan ◽  
Gholamali Jafari ◽  
Nan Zhang ◽  
Edward Membreno ◽  
Siyang Yan ◽  
...  

Unicellular tubes are components of internal organs and capillaries. It is unclear how they meet the architectural challenge to extend a centered intracellular lumen of uniform diameter. In an RNAi-based Caenorhabditis elegans screen, we identified three intermediate filaments (IFs)—IFA-4, IFB-1, and IFC-2—as interactors of the lumenal membrane-actin linker ERM-1 in excretory-canal tubulogenesis. We find that IFs, generally thought to affect morphogenesis indirectly by maintaining tissue integrity, directly promote lumenogenesis in this capillary-like single-cell tube. We show that ERM-1, ACT-5/actin, and TBB-2/tubulin recruit membrane-forming endosomal and flux-promoting canalicular vesicles to the lumen, whereas IFs, themselves recruited to the lumen by ERM-1 and TBB-2, restrain lateral vesicle access. IFs thereby prevent cystogenesis, equilibrate the lumen diameter, and promote lumen forward extension. Genetic and imaging analyses suggest that IFB-1/IFA-4 and IFB-1/IFC-2 polymers form a perilumenal triple IF lattice, sandwiched between actin and helical tubulin. Our findings characterize a novel mechanism of capillary-like lumenogenesis, where a tensile trilayered cytoskeletal endotube transforms concentric into directional growth.

Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 185-206 ◽  
Author(s):  
Rebecca M Terns ◽  
Peggy Kroll-Conner ◽  
Jiangwen Zhu ◽  
Sooyoun Chung ◽  
Joel H Rothman

To identify genomic regions required for establishment and patterning of the epidermis, we screened 58 deficiencies that collectively delete at least ∼67% of the Caenorhabditis elegans genome. The epidermal pattern of deficiency homozygous embryos was analyzed by examining expression of a marker specific for one of the three major epidermal cell types, the seam cells. The organization of the epidermis and internal organs was also analyzed using a monoclonal antibody specific for epithelial adherens junctions. While seven deficiencies had no apparent effect on seam cell production, 21 were found to result in subnormal, and five in excess numbers of these cells. An additional 23 deficiencies blocked expression of the seam cell marker, in some cases without preventing cell proliferation. Two deficiencies result in multinucleate seam cells. Deficiencies were also identified that result in subnormal numbers of epidermal cells, hyperfusion of epidermal cells into a large syncytium, or aberrant epidermal differentiation. Finally, analysis of internal epithelia revealed deficiencies that cause defects in formation of internal organs, including circularization of the intestine and bifurcation of the pharynx lumen. This study reveals that many regions of the C. elegans genome are required zygotically for patterning of the epidermis and other epithelia.


Genetics ◽  
2001 ◽  
Vol 157 (4) ◽  
pp. 1611-1622 ◽  
Author(s):  
Go Shioi ◽  
Michinari Shoji ◽  
Masashi Nakamura ◽  
Takeshi Ishihara ◽  
Isao Katsura ◽  
...  

Abstract Using a pan-neuronal GFP marker, a morphological screen was performed to detect Caenorhabditis elegans larval lethal mutants with severely disorganized major nerve cords. We recovered and characterized 21 mutants that displayed displacement or detachment of the ventral nerve cord from the body wall (Ven: ventral cord abnormal). Six mutations defined three novel genetic loci: ven-1, ven-2, and ven-3. Fifteen mutations proved to be alleles of previously identified muscle attachment/positioning genes, mup-4, mua-1, mua-5, and mua-6. All the mutants also displayed muscle attachment/positioning defects characteristic of mua/mup mutants. The pan-neuronal GFP marker also revealed that mutants of other mua/mup loci, such as mup-1, mup-2, and mua-2, exhibited the Ven defect. The hypodermis, the excretory canal, and the gonad were morphologically abnormal in some of the mutants. The pleiotropic nature of the defects indicates that ven and mua/mup genes are required generally for the maintenance of attachment of tissues to the body wall in C. elegans.


2011 ◽  
Vol 193 (3) ◽  
pp. 455-464 ◽  
Author(s):  
Maria Teresa Abreu-Blanco ◽  
Jeffrey M. Verboon ◽  
Susan M. Parkhurst

When single cells or tissues are injured, the wound must be repaired quickly in order to prevent cell death, loss of tissue integrity, and invasion by microorganisms. We describe Drosophila as a genetically tractable model to dissect the mechanisms of single-cell wound repair. By analyzing the expression and the effects of perturbations of actin, myosin, microtubules, E-cadherin, and the plasma membrane, we define three distinct phases in the repair process—expansion, contraction, and closure—and identify specific components required during each phase. Specifically, plasma membrane mobilization and assembly of a contractile actomyosin ring are required for this process. In addition, E-cadherin accumulates at the wound edge, and wound expansion is excessive in E-cadherin mutants, suggesting a role for E-cadherin in anchoring the actomyosin ring to the plasma membrane. Our results show that single-cell wound repair requires specific spatial and temporal cytoskeleton responses with distinct components and mechanisms required at different stages of the process.


2019 ◽  
Vol 10 (1) ◽  
pp. 267-280 ◽  
Author(s):  
Michael A. Q. Martinez ◽  
Brian A. Kinney ◽  
Taylor N. Medwig-Kinney ◽  
Guinevere Ashley ◽  
James M. Ragle ◽  
...  

As developmental biologists in the age of genome editing, we now have access to an ever-increasing array of tools to manipulate endogenous gene expression. The auxin-inducible degradation system allows for spatial and temporal control of protein degradation via a hormone-inducible Arabidopsis F-box protein, transport inhibitor response 1 (TIR1). In the presence of auxin, TIR1 serves as a substrate-recognition component of the E3 ubiquitin ligase complex SKP1-CUL1-F-box (SCF), ubiquitinating auxin-inducible degron (AID)-tagged proteins for proteasomal degradation. Here, we optimize the Caenorhabditis elegans AID system by utilizing 1-naphthaleneacetic acid (NAA), an indole-free synthetic analog of the natural auxin indole-3-acetic acid (IAA). We take advantage of the photostability of NAA to demonstrate via quantitative high-resolution microscopy that rapid degradation of target proteins can be detected in single cells within 30 min of exposure. Additionally, we show that NAA works robustly in both standard growth media and physiological buffer. We also demonstrate that K-NAA, the water-soluble, potassium salt of NAA, can be combined with microfluidics for targeted protein degradation in C. elegans larvae. We provide insight into how the AID system functions in C. elegans by determining that TIR1 depends on C. elegansSKR-1/2, CUL-1, and RBX-1 to degrade target proteins. Finally, we present highly penetrant defects from NAA-mediated degradation of the FTZ-F1 nuclear hormone receptor, NHR-25, during C. elegans uterine-vulval development. Together, this work improves our use and understanding of the AID system for dissecting gene function at the single-cell level during C. elegans development.


Author(s):  
Ramiro Lorenzo ◽  
Michiho Onizuka ◽  
Matthieu Defrance ◽  
Patrick Laurent

Abstract Single-cell RNA-sequencing (scRNA-seq) of the Caenorhabditis elegans nervous system offers the unique opportunity to obtain a partial expression profile for each neuron within a known connectome. Building on recent scRNA-seq data and on a molecular atlas describing the expression pattern of ∼800 genes at the single cell resolution, we designed an iterative clustering analysis aiming to match each cell-cluster to the ∼100 anatomically defined neuron classes of C. elegans. This heuristic approach successfully assigned 97 of the 118 neuron classes to a cluster. Sixty two clusters were assigned to a single neuron class and 15 clusters grouped neuron classes sharing close molecular signatures. Pseudotime analysis revealed a maturation process occurring in some neurons (e.g. PDA) during the L2 stage. Based on the molecular profiles of all identified neurons, we predicted cell fate regulators and experimentally validated unc-86 for the normal differentiation of RMG neurons. Furthermore, we observed that different classes of genes functionally diversify sensory neurons, interneurons and motorneurons. Finally, we designed 15 new neuron class-specific promoters validated in vivo. Amongst them, 10 represent the only specific promoter reported to this day, expanding the list of neurons amenable to genetic manipulations.


2019 ◽  
Author(s):  
Tianhao Mu ◽  
Liqin Xu ◽  
Yu Zhong ◽  
Xinyu Liu ◽  
Zhikun Zhao ◽  
...  

AbstractThe liver and gallbladder are among the most important internal organs derived from the endoderm. Several inductive signals regulate liver development, yet the pure nascent hepatic and gallbladder cells are unable to be isolated due to limited cell markers and cell numbers. The transcriptome networks of the hepatic lineage in the endoderm, and how the gallbladder differentiates from the adjacent endoderm population, are not fully understood. Using a transgenic Foxa2eGFP reporter mouse line, we performed deep single-cell RNA sequencing on 1,966 individual cells, including nascent hepatic and gallbladder cells, isolated from the endoderm and hepatic regions from ten embryonic stages, ranging from day E7.5 to E15.5. We identified the embryonic liver developmental trajectory from primitive streak to hepatoblasts and characterized the transcriptome of the hepatic lineage. During pre-hepatogenesis (5-6 somite stage), we have identified two groups of foregut endoderm cells, one derived from visceral endoderm and the second derived from primitive streak via a mesenchymal-epithelial transition (MET). During the liver specification stages, liver primordium was identified to share both foregut and liver features. We also documented dynamic gene expression during the epithelial-hepatic transition (EHT). Six gene groups were found to switch on or off at different stages during liver specification. Importantly, we found that RXR complex signaling and newly identified transcription factors associated with liver specification. Moreover, we revealed the gallbladder primordium cells at E9.5 and found genes that transcriptionally distinguish them from the liver primordium. The present data provides a high-resolution resource and critical insights for understanding the emergence of the endoderm, liver and gallbladder development.


Science ◽  
2019 ◽  
Vol 365 (6459) ◽  
pp. eaax1971 ◽  
Author(s):  
Jonathan S. Packer ◽  
Qin Zhu ◽  
Chau Huynh ◽  
Priya Sivaramakrishnan ◽  
Elicia Preston ◽  
...  

Caenorhabditis elegans is an animal with few cells but a wide diversity of cell types. In this study, we characterize the molecular basis for their specification by profiling the transcriptomes of 86,024 single embryonic cells. We identify 502 terminal and preterminal cell types, mapping most single-cell transcriptomes to their exact position in C. elegans’ invariant lineage. Using these annotations, we find that (i) the correlation between a cell’s lineage and its transcriptome increases from middle to late gastrulation, then falls substantially as cells in the nervous system and pharynx adopt their terminal fates; (ii) multilineage priming contributes to the differentiation of sister cells at dozens of lineage branches; and (iii) most distinct lineages that produce the same anatomical cell type converge to a homogenous transcriptomic state.


Sign in / Sign up

Export Citation Format

Share Document