scholarly journals LYSOSOMES IN THE RAT SCIATIC NERVE FOLLOWING CRUSH

1965 ◽  
Vol 27 (3) ◽  
pp. 651-669 ◽  
Author(s):  
Eric Holtzman ◽  
Alex B. Novikoff

Peripheral nerves undergoing degeneration are favorable material for studying the types, origins, and functions of lysosomes. The following lysosomes are described: (a) Autophagic vacuoles in altered Schwann cells. Within these vacuoles the myelin and much of the axoplasm which it encloses in the normal nerve are degraded (Wallerian degeneration). The delimiting membranes of the vacuoles apparently form from myelin lamellae. Considered as possible sources of their acid phosphatase are Golgi vesicles (primary lysosomes), lysosomes of the dense body type, and the endoplasmic reticulum which lies close to the vacuoles. (b) Membranous bodies that accumulate focally in myelinated fibers in a zone extending 2 to 3 mm distal to the crush. These appear to arise from the endoplasmic reticulum in which demonstrable acid phosphatase activity increases markedly within 2 hours after the nerve is crushed. (c) Autophagic vacuoles in the axoplasm of fibers proximal to the crush. The breakdown of organelles within these vacuoles may have significance for the reorganization of the axoplasm preparatory to regeneration. (d) Phagocytic vacuoles of altered Schwann cells. As myelin degeneration begins, some axoplasm is exposed. This is apparently engulfed by the filopodia of the Schwann cells, and degraded within the phagocytic vacuoles thus formed. (e) Multivesicular bodies in the axoplasm of myelinated fibers. These are generally seen near the nodes of Ranvier.

1970 ◽  
Vol 7 (5) ◽  
pp. 420-434 ◽  
Author(s):  
K. M. Charlton ◽  
K. R. Pierce

Lesions in peripheral nerves from 12 goats poisoned experimentally with coyotillo were studied by light and electron microscopy. The goats were poisoned with daily oral doses of the ground coyotillo fruits and killed at various times after the first day of dosing. Lesions at a mid-femoral site of the sciatic nerve included swelling of Schwann cells, degeneration of mitochondria, depletion of glycogen, splitting of myelin, segmental demyelination, and Wallerian degeneration. The results were suggestive of primary mitochondrial injury in Schwann cells with resultant impaired active transport, intracellular edema, splitting of myelin, and segmental demyelination.


1981 ◽  
Vol 59 (5) ◽  
pp. 908-928 ◽  
Author(s):  
Martha J. Powell ◽  
Charles E. Bracker ◽  
David J. Sternshein

The cytological events involved in the transformation of vegetative hyphae of the zygomycete Gilbertella persicaria (Eddy) Hesseltine into chlamydospores were studied with light and electron microscopy. Thirty hours after sporangiospores were inoculated into YPG broth, swellings appeared along the aseptate hyphae. Later, septa, traversed by plasmodesmata, delimited each end of the hyphal swellings and compartmentalized these hyphal regions as they differentiated into chlamydospores. Nonswollen regions adjacent to chlamydospores remained as isthmuses. Two additional wall layers appeared within the vegetative wall of the developing chlamydospores. An alveolate, electron-dense wall formed first, and then an electron-transparent layer containing concentrically oriented fibers formed between this layer and the plasma membrane. Rather than a mere condensation of cytoplasm, development and maturation of the multinucleate chlamydospores involved extensive cytoplasmic changes such as an increase in reserve products, lipid and glycogen, an increase and then disappearance of vacuoles, and the breakdown of many mitochondria. Underlying the plasma membrane during chlamydospore wall formation were endoplasmic reticulum, multivesicular bodies, vesicles with fibrillar contents, vesicles with electron-transparent contents, and cisternal rings containing the Golgi apparatus marker enzyme, thiamine pyrophosphatase. Acid phosphatase activity was localized cytochemically in a cisterna which enclosed mitochondria and in vacuoles which contained membrane fragments. Tightly packed membrane whorls and single membrane bounded sacs with finely granular matrices surrounding vacuoles were unique during chlamydospore development. Microbodies were rare in the mature chlamydospore, but endoplasmic reticulum was closely associated with lipid globules. As chlamydospores developed, the cytoplasm in the isthmus became highly vacuolated, lipid globules were closely associated with vacuoles, mitochondria were broken down in vacuoles, unusual membrane configurations appeared, and eventually the membranes degenerated. Unlike chlamydospores, walls of the isthmus did not thicken, but irregularly shaped appositions containing numerous channels formed at intervals on the inside of these walls. The pattern of cytoplasmic transformations during chlamydospore development is similar to events leading to the formation of zygospores and sporangiospores.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Junyang Jung ◽  
Hyun Woo Jo ◽  
Hyunseob Kwon ◽  
Na Young Jeong

Studies have shown that lysosomal activation increases in Schwann cells after nerve injury. Lysosomal activation is thought to promote the engulfment of myelin debris or fragments of injured axons in Schwann cells during Wallerian degeneration. However, a recent interpretation of lysosomal activation proposes a different view of the phenomenon. During Wallerian degeneration, lysosomes become secretory vesicles and are activated for lysosomal exocytosis. The lysosomal exocytosis triggers adenosine 5′-triphosphate (ATP) release from peripheral neurons and Schwann cells during Wallerian degeneration. Exocytosis is involved in demyelination and axonal degradation, which facilitate nerve regeneration following nerve degeneration. At this time, released ATP may affect the communication between cells in peripheral nerves. In this review, our description of the relationship between lysosomal exocytosis and Wallerian degeneration has implications for the understanding of peripheral nerve degenerative diseases and peripheral neuropathies, such as Charcot-Marie-Tooth disease or Guillain-Barré syndrome.


2015 ◽  
Vol 210 (1) ◽  
pp. 153-168 ◽  
Author(s):  
Jose A. Gomez-Sanchez ◽  
Lucy Carty ◽  
Marta Iruarrizaga-Lejarreta ◽  
Marta Palomo-Irigoyen ◽  
Marta Varela-Rey ◽  
...  

Although Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell–mediated myelin digestion possible have not been established. We report that Schwann cells degrade myelin after injury by a novel form of selective autophagy, myelinophagy. Autophagy was up-regulated by myelinating Schwann cells after nerve injury, myelin debris was present in autophagosomes, and pharmacological and genetic inhibition of autophagy impaired myelin clearance. Myelinophagy was positively regulated by the Schwann cell JNK/c-Jun pathway, a central regulator of the Schwann cell reprogramming induced by nerve injury. We also present evidence that myelinophagy is defective in the injured central nervous system. These results reveal an important role for inductive autophagy during Wallerian degeneration, and point to potential mechanistic targets for accelerating myelin clearance and improving demyelinating disease.


Glia ◽  
2012 ◽  
Vol 60 (10) ◽  
pp. 1619-1628 ◽  
Author(s):  
So Young Jang ◽  
Yoon Kyung Shin ◽  
Ha Young Lee ◽  
Joo Youn Park ◽  
Duk Joon Suh ◽  
...  

1968 ◽  
Vol 16 (5) ◽  
pp. 320-336 ◽  
Author(s):  
ERIC HOLTZMAN ◽  
REGINA DOMINITZ

The adrenalin-producing cells of the rat adrenal medulla have been studied by light and electron microscopy. Frozen sections of glutaraldehyde-perfused material were incubated for demonstration of "marker" enzymes for lysosomes (acid phosphatase, aryl sulfatase) and Golgi apparatus (thiamine pyrophosphatase). In addition, the uptake and fate of intravenously administered horseradish peroxidase was followed. Acid phosphatase activity is demonstrable in secretory granules, Golgi saccules, vesicles in the Golgi area and in the agranular tubules and cisternae (GERL) from which secretory granules appear to form at the inner surface of the Golgi apparatus. Endoplasmic reticulum with ribosomes on only one surface is closely apposed to both inner and outer aspects of the Golgi apparatus. Peroxidase is taken up in vesicles, tubules and "cup-like" bodies. The latter apparently transform into multivesicular bodies. A possible source of the acid phosphatase found in multivesicular bodies is the small vesicles from the Golgi apparatus or GERL.


1970 ◽  
Vol 44 (3) ◽  
pp. 513-529 ◽  
Author(s):  
Sidney Goldfischer ◽  
Alex B. Novikoff ◽  
Arline Albala ◽  
Luis Biempica

The peroxidatic activity of hemoglobin permitted visualization of its uptake by rat hepatocytes by means of the Graham-Karnovsky 3,3'-diaminobenzidine (DAB) procedure. Lysosomes were visualized by their acid phosphatase, ß-glucuronidase, and glucosaminidase activities. When large doses of rat, cow, or human hemoglobin are intravenously injected, or when hemoglobinemia is induced by injection of distilled water, DAB-positive hemoglobin is engulfed by pinocytosis. Pinocytotic vacuoles become digestive vacuoles ("phagolysosomes") by fusion with lysosomes of the dense body type that have moved from their pericanalicular position. By 16–24 hr after even massive amounts of hemoglobin (400 mg/100 g), the protein is barely demonstrable in hepatocytes. At the lowest doses of injected hemoglobin (15 mg/100 g body weight), DAB-positive vacuoles are demonstrable only in the Kupffer cells.


1971 ◽  
Vol 48 (3) ◽  
pp. 473-489 ◽  
Author(s):  
Russell L. Deter

Quantitative characterization of dense body, autophagic vacuole and acid phosphatase-bearing particle populations of rat liver have been made at 10 min intervals during the first 50 min following the intraperitoneal administration of glucagon. Beginning 10 to 20 min postinjection, increases in the number of autophagic vacuoles and in the osmotic sensitivity of acid phosphatase-bearing particles were observed, associated with a progressive disappearance of dense bodies. These changes appeared to reach a maximum 50 min after treatment. The average volume of autophagic vacuoles was found to be 440–870% greater than that of normal dense bodies during this time period. No consistent change in total acid phosphatase activity was noted. A detailed study of autophagic vacuole profile populations revealed the presence of five different types of profiles, two of which, types I and II, accounted for 76.3–94.4% of the profiles examined. Type I profiles primarily contained elements of the endoplasmic reticulum, free ribosomes, and ground cytoplasm. Type II profiles had mitochondrial profiles as their principal constituent, but endoplasmic reticulum and free ribosomes were also seen. At all time points type I profiles predominated, comprising 55–69% of the profiles found. Both profile types were bounded by single and double limiting membranes, the former being predominate. A time-dependent change in the ratio of single to double membrane-limited profiles could not be demonstrated. Morphometric parameters derived from profile size distributions indicated that the number of types I and II autophagic vacuoles increased with time, the rate being greater for the type II particle, except between 40 and 50 min. The average volume of the type II autophagic vacuole was consistently greater than that of the type I.


1965 ◽  
Vol 27 (3) ◽  
pp. 603-620 ◽  
Author(s):  
Nancy J. Lane ◽  
Alex B. Novikoff

Cultured KB cells (derived from a human oral carcinoma) grown in monolayers were injured by one of three agents: starvation by arginine deprivation or treatment with high doses of either ultraviolet radiation or x-radiation. The different agents produced changes in nucleolar structure and varying accumulations of triglyceride and glycogen. All three agents produced an increase in number and size of lysosomes. These were studied in acid phosphatase preparations, viewed by both light and electron microscopy, and, occasionally, in vital dye, esterase, and aryl sulfatase preparations. Ultrastructurally, alterations in lysosomes suggested that "residual bodies" developed in a variety of ways, i.e., from the endoplasmic reticulum, multivesicular bodies, or autophagic vacuoles. Following all three agents the endoplasmic reticulum assumed the form of "rough" or "smooth" whorls, and, after two of the agents, arginine deprivation or ultraviolet radiation, it acquired cytochemically demonstrable acid phosphatase activity. Near connections between the endoplasmic reticulum and lysosomes raise the possibility that in KB cells, at least when injured, the endoplasmic reticulum is involved in the formation of lysosomes and the transport of acid phosphatase to them.


Sign in / Sign up

Export Citation Format

Share Document