scholarly journals PHOTORECEPTOR STRUCTURES

1957 ◽  
Vol 3 (3) ◽  
pp. 441-448 ◽  
Author(s):  
J. J. Wolken ◽  
J. Capenos ◽  
A. Turano

The eyes of three eye mutants of Drosophila melanogaster were fixed and thin sections studied for its structural detail in the electron microscope. Each ommatidium was found to have seven retinula cells with an equal number of rhabdomeres (visual units). The rhabdomeres average 1.2 µ in diameter and 60 µ in length. Each rhabdomere consists of osmium-fixed dense bands averaging 120 A in thickness, and with less dense interspaces 200 to 400 A. There is an average of 23 dense bands or 46 interfaces per micron within the rhabdomere. The rhabdomere as we have presented it is a single structure of packed rods or tubes. The "fine structure" within the rhabdomere is similar to that observed by electron microscopy for the retinula of the house fly, and to the retinal rods of the vertebrate eye, and to the chloroplasts of plant cells in a variety of animal and plant photoreceptor structures. In addition, the radial arrangements within the ommatidium of radially unsymmetrical units, the rhabdomeres, is probably related to the analysis of polarized light in the insect eye.

1978 ◽  
Vol 78 (2) ◽  
pp. 597-621 ◽  
Author(s):  
J Metuzals ◽  
I Tasaki

A new technique utilizing the squid giant nerve fiber has been developed which permits direct examination of the inner face of the axolemma by scanning electron microscopy. The axoplasm was removed sequentially in a 15-mm long segment of the fiber by intracellular perfusion with a solution of KF, KCl, Ca++-containing seawater, or with pronase. The action potential of the fibers was monitored during these treatments. After brief prefixation in 1% paraformaldehyde and 1% glutaraldehyde, the perfused segment was opened by a lne could be related to information on the detailed morphology of the cytoplasmic face of the axolemma and the ectoplasm. The results obtained by scanning electron microscopy were further substantiated by transmission electron microscopy of thin sections. In addition, living axons were studied with polarized light during axoplasm removal, and the identification of actin by heavy meromyosin labeling and sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis was accomplished. These observations demonstrate that a three-dimensional network of interwoven filaments, consisting partly of an actinlike protein, is firmly attached to the axolemma. The axoplasmic face of fibers in which the filaments have been removed partially after perfusion with pronase displays smooth membranous blebs and large profiles which sppose the axolemma. In fibers where the excitability has been suppressed by pronase perfusion, approximately one-third of the inner face of the axolemma in the perfusion zone is free of filaments. It is hypothesized that the attachment of axoplasm filaments to the axolemma may have a role in the maintenance of the normal morphology of the axolemma, and, thus, in some aspect of excitability.


Author(s):  
E. Laurence Thurston ◽  
John C. Russ

Thin sections (2000 Å) of the filamentous blue-green alga, Fischerella ambigua, containing large (0.6μ) structured granules (fig. 1, 2), stinging cell walls of Urtica dioica (common nettle), and isolated bean mitochondria were examined with a scanning electron microscope equipped with a transmitted electron detector and an energy dispersive x-ray spectrometer. Specimens were fixed in unbuffered 3% glutaraldehyde at 4° C for 2 hours, dehydrated in ethanol, and embedded in an Araldite/Epon mixture for microanalysis. Sections were cut at 2000 Å and mounted unstained on 75 mesh Formvar coated copper grids, or 300 mesh uncoated copper grids. Specimen contrast was excellent without post-staining, and specimen resolution when viewed with the transmitted electron detector was approximately 100 Å.Because of limited space this discussion is restricted mostly to the analysis of the structured granules in Fischerella.


Author(s):  
L. D. Ackerman ◽  
S. H. Y. Wei

Mature human dental enamel has presented investigators with several difficulties in ultramicrotomy of specimens for electron microscopy due to its high degree of mineralization. This study explores the possibility of combining ion-milling and high voltage electron microscopy as a means of circumventing the problems of ultramicrotomy.A longitudinal section of an extracted human third molar was ground to a thickness of about 30 um and polarized light micrographs were taken. The specimen was attached to a single hole grid and thinned by argon-ion bombardment at 15° incidence while rotating at 15 rpm. The beam current in each of two guns was 50 μA with an accelerating voltage of 4 kV. A 20 nm carbon coating was evaporated onto the specimen to prevent an electron charge from building up during electron microscopy.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
J.R. Walton

In electron microscopy, lead is the metal most widely used for enhancing specimen contrast. Lead citrate requires a pH of 12 to stain thin sections of epoxy-embedded material rapidly and intensively. However, this high alkalinity tends to leach out enzyme reaction products, making lead citrate unsuitable for many cytochemical studies. Substitution of the chelator aspartate for citrate allows staining to be carried out at pH 6 or 7 without apparent effect on cytochemical products. Moreover, due to the low, controlled level of free lead ions, contamination-free staining can be carried out en bloc, prior to dehydration and embedding. En bloc use of lead aspartate permits the grid-staining step to be bypassed, allowing samples to be examined immediately after thin-sectioning.Procedures. To prevent precipitation of lead salts, double- or glass-distilled H20 used in the stain and rinses should be boiled to drive off carbon dioxide and glassware should be carefully rinsed to remove any persisting traces of calcium ion.


Author(s):  
N.C. Lyon ◽  
W. C. Mueller

Schumacher and Halbsguth first demonstrated ectodesmata as pores or channels in the epidermal cell walls in haustoria of Cuscuta odorata L. by light microscopy in tissues fixed in a sublimate fixative (30% ethyl alcohol, 30 ml:glacial acetic acid, 10 ml: 65% nitric acid, 1 ml: 40% formaldehyde, 5 ml: oxalic acid, 2 g: mecuric chloride to saturation 2-3 g). Other workers have published electron micrographs of structures transversing the outer epidermal cell in thin sections of plant leaves that have been interpreted as ectodesmata. Such structures are evident following treatment with Hg++ or Ag+ salts and are only rarely observed by electron microscopy. If ectodesmata exist without such treatment, and are not artefacts, they would afford natural pathways of entry for applied foliar solutions and plant viruses.


Author(s):  
Thomas S. Leeson ◽  
C. Roland Leeson

Numerous previous studies of outer segments of retinal receptors have demonstrated a complex internal structure of a series of transversely orientated membranous lamellae, discs, or saccules. In cones, these lamellae probably are invaginations of the covering plasma membrane. In rods, however, they appear to be isolated and separate discs although some authors report interconnections and some continuities with the surface near the base of the outer segment, i.e. toward the inner segment. In some species, variations have been reported, such as longitudinally orientated lamellae and lamellar whorls. In cross section, the discs or saccules show one or more incisures. The saccules probably contain photolabile pigment, with resulting potentials after dipole formation during bleaching of pigment. Continuity between the lamina of rod saccules and extracellular space may be necessary for the detection of dipoles, although such continuity usually is not found by electron microscopy. Particles on the membranes have been found by low angle X-ray diffraction, by low temperature electron microscopy and by freeze-etching techniques.


Author(s):  
P.J. Lea ◽  
M.J. Hollenberg

Our current understanding of mitochondrial ultrastructure has been derived primarily from thin sections using transmission electron microscopy (TEM). This information has been extrapolated into three dimensions by artist's impressions (1) or serial sectioning techniques in combination with computer processing (2). The resolution of serial reconstruction methods is limited by section thickness whereas artist's impressions have obvious disadvantages.In contrast, the new techniques of HRSEM used in this study (3) offer the opportunity to view simultaneously both the internal and external structure of mitochondria directly in three dimensions and in detail.The tridimensional ultrastructure of mitochondria from rat hepatocytes, retinal (retinal pigment epithelium), renal (proximal convoluted tubule) and adrenal cortex cells were studied by HRSEM. The specimens were prepared by aldehyde-osmium fixation in combination with freeze cleavage followed by partial extraction of cytosol with a weak solution of osmium tetroxide (4). The specimens were examined with a Hitachi S-570 scanning electron microscope, resolution better than 30 nm, where the secondary electron detector is located in the column directly above the specimen inserted within the objective lens.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Author(s):  
T. Baird ◽  
J.R. Fryer ◽  
S.T. Galbraith

Introduction Previously we had suggested (l) that the striations observed in the pod shaped crystals of β FeOOH were an artefact of imaging in the electron microscope. Contrary to this adsorption measurements on bulk material had indicated the presence of some porosity and Gallagher (2) had proposed a model structure - based on the hollandite structure - showing the hollandite rods forming the sides of 30Å pores running the length of the crystal. Low resolution electron microscopy by Watson (3) on sectioned crystals embedded in methylmethacrylate had tended to support the existence of such pores.We have applied modern high resolution techniques to the bulk crystals and thin sections of them without confirming these earlier postulatesExperimental β FeOOH was prepared by room temperature hydrolysis of 0.01M solutions of FeCl3.6H2O, The precipitate was washed, dried in air, and embedded in Scandiplast resin. The sections were out on an LKB III Ultramicrotome to a thickness of about 500Å.


Sign in / Sign up

Export Citation Format

Share Document