scholarly journals THE FINE STRUCTURE OF CAPILLARIES AND SMALL ARTERIES

1957 ◽  
Vol 3 (3) ◽  
pp. 457-462 ◽  
Author(s):  
Dan H. Moore ◽  
Helmut Ruska

Details of capillary endothelia of the mammalian heart are described and compared with capillaries of other organs and tissues. Continuous invagination and pinching off of the plasma membrane to form small vesicles which move across the cytoplasm are suggested as constituting a means of active and selective transmission through capillary walls (12). This might be designated as cytopempsis (transmission by cell). The fine structure of the different layers in the walls of small heart arteries is demonstrated. Endothelial protrusions extend through windows of the elestica interna to make direct contact with smooth muscle plasma membranes. The elastica interna appears to vary greatly in both thickness and density, and probably restricts filtration, diffusion, and osmosis to such an extent that windows and the transport mechanisms described (cytopempsis) are necessary for the functional integrity of the smooth muscle layer. The contractile material consists of very fine, poorly oriented filaments.

Life Sciences ◽  
2021 ◽  
Vol 271 ◽  
pp. 119198
Author(s):  
Luana Araújo Manso ◽  
Barbara Costa Malmann Medeiros ◽  
Giovanna Amaral Rodrigues ◽  
Jordana Gomes Ramos ◽  
Mara Rúbia Marques ◽  
...  

Author(s):  
Mischa Borsdorf ◽  
Markus Böl ◽  
Tobias Siebert

AbstractUniaxial tensile experiments are a standard method to determine the contractile properties of smooth muscles. Smooth muscle strips from organs of the urogenital and gastrointestinal tract contain multiple muscle layers with different muscle fiber orientations, which are frequently not separated for the experiments. During strip activation, these muscle fibers contract in deviant orientations from the force-measuring axis, affecting the biomechanical characteristics of the tissue strips. This study aimed to investigate the influence of muscle layer separation on the determination of smooth muscle properties. Smooth muscle strips, consisting of longitudinal and circumferential muscle layers (whole-muscle strips [WMS]), and smooth muscle strips, consisting of only the circumferential muscle layer (separated layer strips [SLS]), have been prepared from the fundus of the porcine stomach. Strips were mounted with muscle fibers of the circumferential layer inline with the force-measuring axis of the uniaxial testing setup. The force–length (FLR) and force–velocity relationships (FVR) were determined through a series of isometric and isotonic contractions, respectively. Muscle layer separation revealed no changes in the FLR. However, the SLS exhibited a higher maximal shortening velocity and a lower curvature factor than WMS. During WMS activation, the transversally oriented muscle fibers of the longitudinal layer shortened, resulting in a narrowing of this layer. Expecting volume constancy of muscle tissue, this narrowing leads to a lengthening of the longitudinal layer, which counteracted the shortening of the circumferential layer during isotonic contractions. Consequently, the shortening velocities of the WMS were decreased significantly. This effect was stronger at high shortening velocities.


2018 ◽  
Vol 19 (9) ◽  
pp. 2489 ◽  
Author(s):  
Lin Zhang ◽  
Christian Aalkjaer ◽  
Vladimir Matchkov

Inhibition of the Na,K-ATPase by ouabain potentiates vascular tone and agonist-induced contraction. These effects of ouabain varies between different reports. In this study, we assessed whether the pro-contractile effect of ouabain changes with arterial diameter and the molecular mechanism behind it. Rat mesenteric small arteries of different diameters (150–350 µm) were studied for noradrenaline-induced changes of isometric force and intracellular Ca2+ in smooth muscle cells. These functional changes were correlated to total Src kinase and Src phosphorylation assessed immunohistochemically. High-affinity ouabain-binding sites were semi-quantified with fluorescent ouabain. We found that potentiation of noradrenaline-sensitivity by ouabain correlates positively with an increase in arterial diameter. This was not due to differences in intracellular Ca2+ responses but due to sensitization of smooth muscle cell contractile machinery to Ca2+. This was associated with ouabain-induced Src activation, which increases with increasing arterial diameter. Total Src expression was similar in arteries of different diameters but the density of high-affinity ouabain binding sites increased with increasing arterial diameters. We suggested that ouabain binding induces more Src kinase activity in mesenteric small arteries with larger diameter leading to enhanced sensitization of the contractile machinery to Ca2+.


2015 ◽  
Vol 309 (7) ◽  
pp. F604-F616 ◽  
Author(s):  
R. Todd Alexander ◽  
Megan R. Beggs ◽  
Reza Zamani ◽  
Niels Marcussen ◽  
Sebastian Frische ◽  
...  

Plasma membrane Ca2+-ATPases (PMCAs) participate in epithelial Ca2+ transport and intracellular Ca2+ signaling. The Pmca4 isoform is enriched in distal nephron isolates and decreased in mice lacking the epithelial transient receptor potential vanilloid 5 Ca2+ channel. We therefore hypothesized that Pmca4 plays a significant role in transcellular Ca2+ flux and investigated the localization and regulation of Pmca4 in Ca2+-transporting epithelia. Using antibodies directed specifically against Pmca4, we found it expressed only in the smooth muscle layer of mouse and human intestines, whereas pan-specific Pmca antibodies detected Pmca1 in lateral membranes of enterocytes. In the kidney, Pmca4 showed broad localization to the distal nephron. In the mouse, expression was most abundant in segments coexpressing the epithelial ransient receptor potential vanilloid 5 Ca2+ channel. Significant, albeit lower, expression was also evident in the region encompassing the cortical thick ascending limbs, macula densa, and early distal tubules as well as smooth muscle layers surrounding renal vessels. In the human kidney, a similar pattern of distribution was observed, with the highest PMCA4 expression in Na+-Cl− cotransporter-positive tubules. Electron microscopy demonstrated Pmca4 localization in distal nephron cells at both the basolateral membrane and intracellular perinuclear compartments but not submembranous vesicles, suggesting rapid trafficking to the plasma membrane is unlikely to occur in vivo. Pmca4 expression was not altered by perturbations in Ca2+ balance, pointing to a housekeeping function of the pump in Ca2+-transporting epithelia. In conclusion, Pmca4 shows a divergent expression pattern in Ca2+-transporting epithelia, inferring diverse roles for this isoform not limited to transepithelial Ca2+ transport.


2011 ◽  
Vol 65 (1-2) ◽  
pp. 51-59 ◽  
Author(s):  
Indira Mujezinovic ◽  
Vitomir Cupic ◽  
Ahmed Smajlovic ◽  
Mehmed Muminovic

Serotonin or 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter synthesised from L-tryptophan in serotonergic neurons and enterochromaffin cells of the gastrointestinal tract. This neurotransmitter is widely distributed in the animal and plant kingdom and regulates some central and peripheral functions through several types of specific serotonergic (5-HT) receptors. Since it is known that the effect of serotonin, especially in pathological conditions, is very important, we believe that determining the types of receptors for this substance would make it possible to use their agonist or antagonists, which would undoubtedly enhance the pharmacotherapy of functional disruption of the small intestine in broilers. Investigations were carried out on isolated smooth muscle strips of the circular and longitudinal layer of the broiler small intestine (strip dimension 3-4 mm x 2 cm). The muscle strips were placed in an isolated organ bath. The mechanical activity of the preparations was recorded via an isotonic force transducer coupled to a pen recorder. This was done following the addition of serotonin (nonselective 5-HT agonist), 8-OH-DPAT (selective 5-HT1A agonist) and spiroxatrin (selective 5-HT1A antagonist). The sensitivity of the tissues to acetylcholine was tested before starting the experiments. Using the obtained results, it can be concluded that 5HT1A type receptors are present in smooth muscles of the broiler small intestine, duodenum and ileum, especially in the longitudinal smooth muscle layer which reacted with contractions even to low serotonin concentration (10-6), but not in the jejunum.


1984 ◽  
Vol 97 (1) ◽  
pp. 134-136 ◽  
Author(s):  
V. K. Rybal'chenko ◽  
P. V. Pogrebnoi ◽  
T. G. Gruzina ◽  
V. I. Karamushka

Sign in / Sign up

Export Citation Format

Share Document