scholarly journals THE SOLUBILITY AND PROPERTIES OF A PURIFIED ICHTHYOCOL IN SALT SOLUTIONS OF NEUTRAL pH

1957 ◽  
Vol 3 (4) ◽  
pp. 545-557 ◽  
Author(s):  
Paul M. Gallop ◽  
Sam Seifter ◽  
Edward Meilman

1. Purified citrate-extracted ichthyocol obtained from carp swim bladders has been further characterized with respect to its content of certain amino acids and carbohydrate substances. 2. The degree of solubilization or dispersion of ichthyocol by solutions of certain salts maintained in the range of neutral pH and at a temperature of 0–2°C. has been determined. 3. While a number of salts of monovalent cations had no significant solubilizing effects on ichthyocol, ammonium chloride in a concentration of 1 M did cause solution of the protein. 4. Sodium thiosulfate in a range of concentrations caused the solubilization of ichthyocol but was most effective in an intermediate concentration of 0.25 M. 5. Several salts of divalent cations, in particular the chlorides of calcium, magnesium, and barium, and magnesium thiosulfate in concentrations ranging from 0.3 to 1 M caused the immediate and complete solubilization of the ichthyocol. 6. Solutions of ichthyocol in calcium chloride, magnesium chloride, and sodium thiosulfate buffered or adjusted to pH 7.0, were studied with respect to intrinsic viscosity of the protein, optical rotation, ultracentrifugal sedimentation, and reconstitution into fibers. It was found in each case that the original characteristics of the collagen, as determined previously in acid solution, were maintained when the protein was dissolved in salt solutions of neutral pH. No evidence of denaturation or gelatinization could be found when ichthyocol was solubilized under the stated conditions. 7. Collagen in neutral solution with sodium thiosulfate, calcium chloride, or magnesium chloride was not attacked by trypsin as determined viscometrically at 20.0°C., but was rapidly degraded by a purified bacterial collagenase.

1956 ◽  
Vol 33 (4) ◽  
pp. 697-708
Author(s):  
J. A. RAMSAY

1. The excretion of calcium, magnesium, chloride, phosphate and hydrogen ions has been studied in preparations of single Malpighian tubules isolated in drops of serum under liquid paraffin. 2. The concentrations of calcium, magnesium and chloride are always lower in the urine than in the serum. 3. The concentration of phosphate is always greater in the urine than in the serum. As the concentration of phosphate in the serum increases, the rate of urine flow also increases. 4. The urine is always alkaline to the serum but becomes acid in the rectum. 5. The general problem of excretion by Malpighian tubules is briefly reviewed and discussed.


Author(s):  
V. V. Shevchuk ◽  
T. N. Potkina ◽  
A. I. Vaitenka ◽  
O. V. Smetanina

The excess of magnesium chloride brines is formed during the polymineral ores processing in order to obtain potassium sulfate. One way to regenerate such brines is to produce artificial carnallite. It is necessary to purify these brines from sulfates for their further use as raw materials for the artificial carnallite production. In this work, the process of desulfurization of magnesium chloride brines with a solution of calcium chloride is studied. The temperature and the processing time, the magnesium chloride solutions concentration and the consumption of desulfurizing agent (calcium chloride) influence on the degree of magnesium chloride solutions purification from sulfate ions was determined. It has been established that almost all sulfate ions interact with calcium ion in 15 minutes and the desulfurization degree reaches 98,08 %. The increase in duration of the suspension mixing is necessary in order to establish equilibrium in the system and relieve the supersaturation in the solution. It has been shown that with increasing solutions saturation with MgCl2, the degree of the magnesium chloride brines purification from SO4 2– ion increases. Complete precipitation of calcium sulfate requires a certain excess concentration of calcium chloride.


1977 ◽  
Vol 55 (5) ◽  
pp. 1122-1134 ◽  
Author(s):  
J. G. Foulks ◽  
Florence A. Perry ◽  
P. Tsang

The depressant effect of acidity on twitches and K contractures in frog skeletal muscle was greatly accentuated in the presence of organic anions, particularly anions such as butyrate, which also reduced these responses at neutral pH. Conversely, alkaline pH antagonized the depression of contractile responses by butyrate. Most of the effects of acid pH were rapid in onset and were accomplished without any change in membrane resting or action potentials, although depolarization developed in the presence of carboxylate anions when pH was reduced below 6.0. Simultaneous variation in pH and butyrate concentration showed that the undissociated acid exerted a prominent depressant effect only when its concentration reached 1–10 mM, and that the marked depressant action of butyrate at neutral pH was produced primarily by the dissociated anion. Similar experiments showed that the dissociated anion also was largely responsible for the enhanced depolarizing effect of acidity in media containing carboxylates. Acid-induced depolarization was not facilitated in media containing methane sulfonate, but in spite of its low pKa, this anion also increased the sensitivity of contractile responses to the depressant effects of acidity. Hence, the accentuation of the effects of organic anions by acid pH must be exerted on the sequence of membrane events which link excitation and contraction. The effect of acidity was greater when longer apolar hydrocarbon chains were attached to the anionic group for both the carboxylate and the sulfonate series of ions. These depressant effects may be produced by interference with the membrane-stabilizing actions of divalent cations, and may involve increased membrane fluidity.


1988 ◽  
Vol 136 (1) ◽  
pp. 13-22 ◽  
Author(s):  
S. Morisawa ◽  
M. Morisawa

Spermatozoa of rainbow trout and chum salmon, which have no potential for motility in the testis, acquire that potential in the sperm duct. This paper demonstrates that there is little difference between the levels of sodium, potassium, calcium, magnesium, chloride and osmolality of the seminal plasma in the testis and in the sperm duct. However, the bicarbonate concentration of the seminal plasma and the pH value of semen were higher in the sperm duct than in the testis. When immotile spermatozoa obtained from the testis were incubated in artificial seminal plasma with a high pH and containing HCO3-, spermatozoa became motile within 1 h. These results suggest that spermatozoa of salmonid fish acquire the potential for motility as a result of the increase in seminal bicarbonate concentration and pH that occurs as spermatozoa pass from the testis to the sperm duct.


1997 ◽  
Vol 47 (1) ◽  
pp. 137-147 ◽  
Author(s):  
Dragan Sinadinović ◽  
Željko Kamberović ◽  
Aleksandar Šutić

Sign in / Sign up

Export Citation Format

Share Document