scholarly journals SPERMATOGENESIS IN ANIMALS AS REVEALED BY ELECTRON MICROSCOPY

1957 ◽  
Vol 3 (5) ◽  
pp. 663-668 ◽  
Author(s):  
G. Yasuzumi ◽  
Hiroshi Ishida

The submicroscopic structure of the maturing spermatid nucleus of the grasshopper, Gelastorrhinus bicoler de Haan, has been studied in thin tissue sections by electron microscopy. In the early spermatid the nucleus appears dense with no clearly resolvable fine structure. In the advanced spermatid with a conical-shaped nucleus, the karyoplasm begins to show a fibrillar structure. At subsequent stages, the elongated spermatid nucleus displays in cross-sections a hexagonal honeycomb pattern and in longitudinal sections an array of parallel lines, 70 A in diameter and spaced 100 to 220 A apart. As differentiation of the spermatid proceeds further, the space between the lines becomes narrower and narrower until it can no longer be resolved.

1955 ◽  
Vol 1 (5) ◽  
pp. 421-428 ◽  
Author(s):  
Maria A. Rudzinska ◽  
Keith R. Porter

The macronucleus in Tokophrya infusionum is composed of numerous Feulgen-positive chromatin bodies (about 0.5 µ in diameter) which appear in thin sections as a dense spongework, homogeneous throughout. The same appearance characterizes metaphase chromosomes of higher forms. Some chromatin bodies of the macronucleus were found to possess a highly organized structure in certain old organisms. This structure appears in cross-sections as a honeycomb and in longitudinal sections as parallel lines about 120 A in diameter evenly spaced (about 230 A). As far as is known this is the first time a regular structure has been found in bodies of chromosomal character at the dimensional level presently explored by electron microscopy. The demonstration that OsO4 can preserve order in chromatin material is another significant aspect of these findings.


Author(s):  
R. K. Nayak ◽  
E. F. Ellington

Few papers on the ultrastructure of the oviduct of ruminant species have been published. To date, only the ultrastructure of bovine oviduct ampulla has been reported. To our knowledge, there is as yet no information available on the fine structural features of the bovine oviduct fimbria epithelium. This report describes the fine structure of bovine fimbria epiithelium during estrus. An attempt has also been made to describe for for the first time the comparative fine structural features of the bovine and porcine oviduct fimbria during estrus. Tissue sections were processed for electron microscopy as described in an earlier paper. The epithelium of the fimbria consisted of ciliated and secretory cells.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
C. W. Kischer

The morphology of the fibroblasts changes markedly as the healing period from burn wounds progresses, through development of the hypertrophic scar, to resolution of the scar by a self-limiting process of maturation or therapeutic resolution. In addition, hypertrophic scars contain an increased cell proliferation largely made up of fibroblasts. This tremendous population of fibroblasts seems congruous with the abundance of collagen and ground substance. The fine structure of these cells should reflect some aspects of the metabolic activity necessary for production of the scar, and might presage the stage of maturation.A comparison of the fine structure of the fibroblasts from normal skin, different scar types, and granulation tissue has been made by transmission (TEM) and scanning electron microscopy (SEM).


Author(s):  
Robert R. Cardell

Hypophysectomy of the rat renders this animal deficient in the hormones of the anterior pituitary gland, thus causing many primary and secondary hormonal effects on basic liver functions. Biochemical studies of these alterations in the rat liver cell are quite extensive; however, relatively few morphological observations on such cells have been recorded. Because the available biochemical information was derived mostly from disrupted and fractionated liver cells, it seemed desirable to examine the problem with the techniques of electron microscopy in order to see what changes are apparent in the intact liver cell after hypophysectomy. Accordingly, liver cells from rats which had been hypophysectomized 5-120 days before sacrifice were studied. Sham-operated rats served as controls and both hypophysectomized and control rats were fasted 15 hours before sacrifice.


Author(s):  
C. N. Sun ◽  
J. J. Ghidoni

Endothelial cells in longitudinal and cross sections of aortas from 3 randomly selected “normal” mongrel dogs were studied by electron microscopy. Segments of aorta were distended with cold cacodylate buffered 5% glutaraldehyde for 10 minutes prior to being cut into small, well oriented tissue blocks. After an additional 1-1/2 hour period in glutaraldehyde, the tissue blocks were well rinsed in buffer and post-fixed in OsO4. After dehydration they were embedded in a mixture of Maraglas, D.E.R. 732, and DDSA.Aldehyde fixation preserves the filamentous and tubular structures (300 Å and less) for adequate demonstration and study. The functional significance of filaments and microtubules has been recently discussed by Buckley and Porter; the precise roles of these cytoplasmic components remains problematic. Endothelial cells in canine aortas contained an abundance of both types of structures.


Author(s):  
D. E. Philpott ◽  
W. Sapp ◽  
C. Williams ◽  
Joann Stevenson ◽  
S. Black

The response of spermatogonial cells to X-irradiation is well documented. It has been shown that there is a radiation resistent stem cell (As) which, after irradiation, replenishes the seminiferous epithelium. Most investigations in this area have dealt with radiation dosages of 100R or more. This study was undertaken to observe cellular responses at doses less than 100R of X-irradiation utilizing a system in which the tissue can be used for light and electron microscopy.Brown B6D2F1 mice aged 16 weeks were exposed to X-irradiation (225KeV; 15mA; filter 0.35 Cu; 50-60 R/min). Four mice were irradiated at each dose level between 1 and 100 rads. Testes were removed 3 days post-irradiation, fixed, and embedded. Sections were cut at 2 microns for light microscopy. After staining, surviving spermatogonia were identified and counted in tubule cross sections. The surviving fraction of spermatogonia compared to control, S/S0, was plotted against dose to give the curve shown in Fig. 1.


Author(s):  
J. A. Traquair ◽  
E. G. Kokko

With the advent of improved dehydration techniques, scanning electron microscopy has become routine in anatomical studies of fungi. Fine structure of hyphae and spore surfaces has been illustrated for many hyphomycetes, and yet, the ultrastructure of the ubiquitous soil fungus, Geomyces pannorus (Link) Sigler & Carmichael has been neglected. This presentation shows that scanning and transmission electron microscopical data must be correlated in resolving septal structure and conidial release in G. pannorus.Although it is reported to be cellulolytic but not keratinolytic, G. pannorus is found on human skin, animals, birds, mushrooms, dung, roots, and frozen meat in addition to various organic soils. In fact, it readily adapts to growth at low temperatures.


Author(s):  
M.E. Lee ◽  
A. Moller ◽  
P.S.O. Fouche ◽  
I.G Gaigher

Scanning electron microscopy of fish scales has facilitated the application of micro-structures to systematics. Electron microscopy studies have added more information on the structure of the scale and the associated cells, many problems still remain unsolved, because of our incomplete knowledge of the process of calcification. One of the main purposes of these studies has been to study the histology, histochemistry, and ultrastructure of both calcified and decalcified scales, and associated cells, and to obtain more information on the mechanism of calcification in the scales. The study of a calcified scale with the electron microscope is complicated by the difficulty in sectioning this material because of the close association of very hard tissue with very soft tissues. Sections often shatter and blemishes are difficult to avoid. Therefore the aim of this study is firstly to develop techniques for the preparation of cross sections of fish scales for scanning electron microscopy and secondly the application of these techniques for the determination of the structures and calcification of fish scales.


Sign in / Sign up

Export Citation Format

Share Document