scholarly journals Selective binding, uptake, and retrograde transport of tetanus toxin by nerve terminals in the rat iris. An electron microscope study using colloidal gold as a tracer

1978 ◽  
Vol 77 (1) ◽  
pp. 1-13 ◽  
Author(s):  
ME Schwab ◽  
H Thoenen

A series of specific macromolecules (tetanus toxin, cholera toxin, nerve growth factor [NGF], and several lectins) have been shown to be transported retrogradely with high selectivity from terminals to cell bodies in various types of neurons. Under identical experimental conditions (low protein concentrations injected), most other macromolecules, e.g. horseradish peroxidase (HRP), albumin, ferritin, are not transported in detectable amounts. In the present EM study, we demonstrate selective binding of tetanus toxin to the surface membrane of nerve terminals, followed by uptake and subsequent retorgrade axonal transport. Tetanus toxin or albumin was adsorbed to colloidal gold particles (diam 200 A). The complex was shown to be stable and well suited as an EM tracer. 1-4 h after injection into the anterior eye chamber of adult rats, tetanus toxin-gold particles were found to be selectively associated with membranes of nerve terminals and preterminal axons. Inside terminals and axons, the tracer was localized mainly in smooth endoplasmic reticulum (SER)-like membrane compartments. In contrast, association of albumin-gold complexes with nervous structures was never observed, in spite of extensive uptake into fibroblasts. Electron microscope and biochemical experiments showed selective retrograde transport of tetanus toxin-gold complexes to the superior cervical ganglion. Specific binding to membrane components at nerve terminals and subsequent internalization and retrograde transport may represent an important pathway for macromolecules carrying information from target organs to the perikarya of their innervating neurons.

1965 ◽  
Vol 25 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Carl M. Feldherr

To investigate the extent to which the electron-opaque pore material can regulate nucleocytoplasmic exchanges which occur through the nuclear annuli, experiments were performed in which polyvinylpyrrolidone (PVP)-coated colloidal gold particles (25 to 170 A in diameter) were microinjected into the cytoplasm of amebas (Amoeba proteus). The cells were fixed at various times after injection and examined with the electron microscope in order to determine the location of the gold particles. High concentrations of gold were found associated with the pore material at specific points adjacent to and within the pores. It is tentatively suggested that such specific accumulations could be a means of selecting substances from the cytoplasm for transport through the pores. Particles were also scattered throughout the ground cytoplasm and nucleoplasm. A comparison of the diameters of particles located in these two regions showed that the ability of materials to penetrate the nuclear envelope is a function of their size. It was estimated that the maximum size of the particles able to enter the nucleus is approximately 125 to 145 A indiameter. The regulation of exchanges with regard to particle size is thought to be dependent on the specific organization of the electron-opaque pore material.


1991 ◽  
Vol 39 (1) ◽  
pp. 37-39 ◽  
Author(s):  
N R Kramarcy ◽  
R Sealock

Using a simple fluorescence test, we show that commercially prepared colloidal gold complexes with goat second antibodies often contain free active antibody. Because such antibodies will compete with antibody-colloidal gold particles for antigen binding sites, labeling intensity at the ultrastructural level must necessarily be submaximal to an unknown degree with such preparations. A survey of five preparations suggests that the problem may be widespread. We recommend that a test of the sort described be incorporated routinely into protocols with all colloidal gold products.


Author(s):  
J.R. Kremer ◽  
E.T. O'Toole ◽  
G.P. Wray ◽  
D.M. Mastronarde ◽  
S.J. Mitchell ◽  
...  

It is well known that irradiation of plastic sections in a conventional transmission electron microscope (cTEM) causes specimen thinning and distortion. Thinning has been observed in the cTEM using several embedding media, using methods such as shrinkage of ordered paracrystalline structures, and shrinkage of sections coated with colloidal gold markers. The total thinning observed in the cTEM (80kev) is 30-50% for thin sections of epon araldite, but similar data do not exist for the HVEM at 1000 kev. Here we describe beam induced thinning and shrinkage of 0.2um sections in the HVEM.Experiments were performed using 0.2um sections of EPOX 812/Araldite or LX112 with 15 nm and 30 nm gold particles affixed to either surface of the section. The sections were initially tilted to approximately 25° and irradiated with known dose rates. Micrographs were taken at different times between 0-20 minutes then the sections were tilted back to 0° for a reference micrograph.


1985 ◽  
Vol 33 (9) ◽  
pp. 891-899 ◽  
Author(s):  
T Adachi ◽  
S Hisano ◽  
S Daikoku

To determine differential tissue antigens in the same section immunocytochemically using the electron microscope, the neurohypophysis was examined following the application of a freeze-drying tissue preparation and staining with the protein A-colloidal gold-antibody complex method (Hisano S, Adachi T, Daikoku S: J Histochem Cytochem 32:705, 1984). At the light microscopic level, colocalized immunostaining for methionine-enkephalin (ENK) and oxytocin (OXT) was found in the rat neurohypophysis under different physiological states. Small pieces of the neurohypophysial tissue were frozen and dried. The dried tissue was fixed with paraformaldehyde vapor and embedded. The ultrathin sections were stained with the antibody for ENK coupled with protein A-small colloidal gold, and antibody for OXT or vasopressin (VP) conjugated with protein A-large colloidal gold. The ultrastructures of the nerve terminals were well preserved and showed many membrane-limited secretory granules. It was possible to identify both OXT- and VP-containing nerve terminals as their secretory granules were differentially labeled with protein A-colloidal gold anti-OXT or anti-VP complex, respectively. The secretory granules, which were labeled with large gold particles for OXT, also carry small gold particles. It is evident that ENK coexists with OXT in the same granules.


Author(s):  
Gary Bassell ◽  
Robert H. Singer

We have been investigating the spatial distribution of nucleic acids intracellularly using in situ hybridization. The use of non-isotopic nucleotide analogs incorporated into the DNA probe allows the detection of the probe at its site of hybridization within the cell. This approach therefore is compatible with the high resolution available by electron microscopy. Biotinated or digoxigenated probe can be detected by antibodies conjugated to colloidal gold. Because mRNA serves as a template for the probe fragments, the colloidal gold particles are detected as arrays which allow it to be unequivocally distinguished from background.


Author(s):  
László G. Kömüves

Light microscopic immunohistochemistry based on the principle of capillary action staining is a widely used method to localize antigens. Capillary action immunostaining, however, has not been tested or applied to detect antigens at the ultrastructural level. The aim of this work was to establish a capillary action staining method for localization of intracellular antigens, using colloidal gold probes.Post-embedding capillary action immunocytochemistry was used to detect maternal IgG in the small intestine of newborn suckling piglets. Pieces of the jejunum of newborn piglets suckled for 12 h were fixed and embedded into LR White resin. Sections on nickel grids were secured on a capillary action glass slide (100 μm wide capillary gap, Bio-Tek Solutions, Santa Barbara CA, distributed by CMS, Houston, TX) by double sided adhesive tape. Immunolabeling was performed by applying reagents over the grids using capillary action and removing reagents by blotting on filter paper. Reagents for capillary action staining were from Biomeda (Foster City, CA). The following steps were performed: 1) wet the surface of the sections with automation buffer twice, 5 min each; 2) block non-specific binding sites with tissue conditioner, 10 min; 3) apply first antibody (affinity-purified rabbit anti-porcine IgG, Sigma Chem. Co., St. Louis, MO), diluted in probe diluent, 1 hour; 4) wash with automation buffer three times, 5 min each; 5) apply gold probe (goat anti-rabbit IgG conjugated to 10 nm colloidal gold, Zymed Laboratories, South San Francisco, CA) diluted in probe diluent, 30 min; 6) wash with automation buffer three times, 5 min each; 7) post-fix with 5% glutaraldehyde in PBS for 10 min; 8) wash with PBS twice, 5 min each; 9) contrast with 1% OSO4 in PBS for 15 min; 10) wash with PBS followed by distilled water for5 min each; 11) stain with 2% uranyl acetate for 10 min; 12) stain with lead citrate for 2 min; 13) wash with distilled water three times, 1 min each. The glass slides were separated, and the grids were air-dried, then removed from the adhesive tape. The following controls were used to ensure the specificity of labeling: i) omission of the first antibody; ii) normal rabbit IgG in lieu of first antibody; iii) rabbit anti-porcine IgG absorbed with porcine IgG.


Author(s):  
R.T.F. Bernard ◽  
R.H.M. Cross

Smooth endoplasmic reticulum (SER) is involved in the biosynthesis of steroid hormones, and changes in the organisation and abundance of this organelle are regularly used as indicators of changes in the level of steroidogenesis. SER is typically arranged as a meshwork of anastomosing tubules which, with the transmission electron microscope, appear as a random mixture of cross, oblique and longitudinal sections. Less commonly the SER appears as swollen vesicles and it is generally suggested that this is an artefact caused during immersion fixation or during immersion of poorly-perfused tissue.During a previous study of the Leydig cells of a seasonally reproducing bat, in which tissue was fixed by immersion, we noted that tubular SER and vesicular SER often occured in adjacent cells and sometimes in the same cell, and that the abundance of the two types of SER changed seasonally. We came to doubt the widelyheld dogma that vesicular SER was an artefact of immersion fixation and set out to test the hypothesis that the method of fixation does not modify the ultrastructure of the SER.


2020 ◽  
Vol 82 (5) ◽  
pp. 11-20
Author(s):  
D.R. Abdulina ◽  
◽  
L.M. Purish ◽  
G.O. Iutynska ◽  
◽  
...  

The studies of the carbohydrate composition of the sulfate-reducing bacteria (SRB) biofilms formed on the steel surface, which are a factor of microbial corrosion, are significant. Since exopolymers synthesized by bacteria could activate corrosive processes. The aim of the study was to investigate the specificity of commercial lectins, labeled with colloidal gold to carbohydrates in the biofilm exopolymeric matrix produced by the corrosive-relevant SRB strains from man-caused ecotopes. Methods. Microbiological methods (obtaining of the SRB biofilms during cultivation in liquid Postgate B media under microaerophilic conditions), biochemical methods (lectin-binding analysis of 10 commercial lectins, labeled with colloidal gold), transmission electron microscopy using JEM-1400 JEOL. Results. It was shown using transmission electron microscopy that the binding of lectins with carbohydrates in the biofilm of the studied SRB strains occurred directly in the exopolymerіс matrix, as well as on the surfaces of bacterial cells, as seen by the presence of colloidal gold particles. For detection of the neutral carbohydrates (D-glucose and D-mannose) in the biofilm of almost all studied bacterial strains PSA lectin was the most specific. This lectin binding in biofilms of Desulfotomaculum sp. К1/3 and Desulfovibrio sp. 10 strains was higher in 90.8% and 94.4%, respectively, then for ConA lectin. The presence of fucose in the SRB biofilms was detected using LABA lectin, that showed specificity to the biofilm EPS of all the studied strains. LBA lectin was the most specific to N-аcetyl-D-galactosamine for determination of amino sugars in the biofilm. The amount of this lectin binding in D. vulgaris DSM644 biofilm was 30.3, 10.1 and 9.3 times higher than SBA, SNA and PNA lectins, respectively. STA, LVA and WGA lectins were used to detect the N-acetyl-Dglucosamine and sialic acid in the biofilm. WGA lectin showed specificity to N-acetyl-D-glucosamine in the biofilm of all the studied SRB; maximum number of bounded colloidal gold particles (175 particles/μm2) was found in the Desulfotomaculum sp. TC3 biofilm. STA lectin was interacted most actively with N-acetyl-D-glucosamine in Desulfotomaculum sp. TC3 and Desulfomicrobium sp. TC4 biofilms. The number of bounded colloidal gold particles was in 9.2 and 7.4 times higher, respectively, than using LVA lectin. The lowest binding of colloidal gold particles was observed for LVA lectin. Conclusions. It was identified the individual specificity of the 10 commercial lectins to the carbohydrates of biofilm matrix on the steel surface, produced by SRB. It was estimated that lectins with identical carbohydrates specificity had variation in binding to the biofilm carbohydrates of different SRB strains. Establishing of the lectin range selected for each culture lead to the reduction of the scope of studies and labor time in the researching of the peculiarities of exopolymeric matrix composition of biofilms formed by corrosiverelevant SRB.


1989 ◽  
Vol 108 (6) ◽  
pp. 2343-2353 ◽  
Author(s):  
R H Singer ◽  
G L Langevin ◽  
J B Lawrence

We have been able to visualize cytoskeletal messenger RNA molecules at high resolution using nonisotopic in situ hybridization followed by whole-mount electron microscopy. Biotinated cDNA probes for actin, tubulin, or vimentin mRNAs were hybridized to Triton-extracted chicken embryo fibroblasts and myoblasts. The cells were then exposed to antibodies against biotin followed by colloidal gold-conjugated antibodies and then critical-point dried. Identification of mRNA was possible using a probe fragmented to small sizes such that hybridization of several probe fragments along the mRNA was detected as a string of colloidal gold particles qualitatively and quantitatively distinguishable from nonspecific background. Extensive analysis showed that when eight gold particles were seen in this iterated array, the signal to noise ratio was greater than 30:1. Furthermore, these gold particles were colinear, often spiral, or circular suggesting detection of a single nucleic acid molecule. Antibodies against actin, vimentin, or tubulin proteins were used after in situ hybridization, allowing simultaneous detection of the protein and its cognate message on the same sample. This revealed that cytoskeletal mRNAs are likely to be extremely close to actin protein (5 nm or less) and unlikely to be within 20 nm of vimentin or tubulin filaments. Actin mRNA was found to be more predominant in lamellipodia of motile cells, confirming previous results. These results indicate that this high resolution in situ hybridization approach is a powerful tool by which to investigate the association of mRNA with the cytoskeleton.


Sign in / Sign up

Export Citation Format

Share Document