scholarly journals Interrelated lipid alterations and their influence on the proliferation and fusion of cultured myogenic cells

1978 ◽  
Vol 77 (2) ◽  
pp. 334-357 ◽  
Author(s):  
AF Horwitz ◽  
A Wight ◽  
P Ludwig ◽  
R Cornell

We have cultured myogenic cells derived from primary explants and a cell line (L6) in a lipid-depleted medium (LDM) and produced large alterations of the fatty acyl and polar headgroup composition and of the cellular sterol levels. These alterations were produced by altering the composition of the media as follows: removing biotin and providing exogenous fatty acid; removing choline and providing exogenous ethanolamine or choline analogues; and by adding 25-OH cholesterol, an inhibitor of 3-hydroxy-3-methylglutarate (HMG)-CoA reductase. Relatively small, secondary alterations of other lipid classes accompany the large primary alteration. In general, they are not obviously compensatory for the primary alteration by retaining some physical property. We have explored the influence of these lipid alterations on myoblast proliferation and fusion into myotubes. In general, considerable variability appears tolerated, but there also appear to be limits. Long-term cultures grown in media containing a single fatty acid do not proliferate indefinitely, and the fatty acid does not become the sole fatty acyl component of the phospholipids. This phenomenon is also observed for cultures enriched in phosphatidylethanolamine (PE) or phosphatidyldimethylethanolamine (PDME). The influence of the lipid alterations on fusion is particularly interesting. The inclusion of 25-OH cholesterol inhibits fusion. Enrichment of the fatty acyl chains with elaidate or the polar headgroups with PE also inhibits fusion, but in contrast to that by 25-OH cholesterol, a significant fraction of the myoblasts are aligned and interacting with each other. Oleate enrichment enhances the rate of fusion.

1984 ◽  
Vol 247 (3) ◽  
pp. G305-G310
Author(s):  
W. J. Kortz ◽  
J. R. Nashold ◽  
M. R. Greenfield ◽  
H. Hilderman ◽  
S. H. Quarfordt

The metabolism of double-labeled triglyceride in a synthetic emulsion was defined in an in vitro perfusion system of rat hind end and liver described previously [Am. J. Physiol. 245 (Gastrointest. Liver Physiol. 8): G106-G112, 1983]. The metabolism of [3H]glycerol-[14C]triolein was defined in the absence of added apoproteins and with additions of human CII and both CII and CIII. Without apoprotein, a pronounced lipolysis of the triglyceride was recognized by high concentrations of radiolabeled glycerol and free fatty acid in the perfusate. The removal of an aliquot of hind-end venous effluent 5 min after adding the labeled triglyceride emulsion to the arterial inflow demonstrated a brisk lipolysis of the substrate when incubated outside the perfusion system. The addition of CII protein to the emulsion before its introduction into the tandem system eliminated perfusate lipolysis, both within the perfusion system and in incubations of aliquots withdrawn from the system. Intravascular lipolysis was not seen with triglyceride emulsions containing both CII and CIH or when an aliquot of hind-end venous effluent was incubated with triglycerides that had not been exposed to the perfusion system. The intravascular lipolysis observed for the [14C]triglyceride added to the tandem system without apoproteins was associated with relatively greater recoveries of 14C-fatty acyl in liver, fat, and muscle and relatively greater recoveries of 14CO2 than when CII alone or both CII and CIII were added with the triglyceride. The addition of CIII to CII in a 1:1 molar ratio increased the recovery of 14C-fatty acyl in muscle and the recovery as 14CO2.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 3 (Supplement_1) ◽  
pp. i19-i19
Author(s):  
Divya Ravi ◽  
Carmen del Genio ◽  
Haider Ghiasuddin ◽  
Arti Gaur

Abstract Glioblastomas (GBM) or Stage IV gliomas, are the most aggressive of primary brain tumors and are associated with high mortality and morbidity. Patients diagnosed with this lethal cancer have a dismal survival rate of 14 months and a 5-year survival rate of 5.6% despite a multimodal therapeutic approach, including surgery, radiation therapy, and chemotherapy. Aberrant lipid metabolism, particularly abnormally active de novo fatty acid synthesis, is recognized to have a key role in tumor progression and chemoresistance in cancers. Previous studies have reported a high expression of fatty acid synthase (FASN) in patient tumors, leading to multiple investigations of FASN inhibition as a treatment strategy. However, none of these have developed as efficacious therapies. Furthermore, when we profiled FASN expression using The Cancer Genome Atlas (TCGA) we determined that high FASN expression in GBM patients did not confer a worse prognosis (HR: 1.06; p-value: 0.51) and was not overexpressed in GBM tumors compared to normal brain. Therefore, we need to reexamine the role of exogenous fatty acid uptake over de novofatty acid synthesis as a potential mechanism for tumor progression. Our study aims to measure and compare fatty acid oxidation (FAO) of endogenous and exogenous fatty acids between GBM patients and healthy controls. Using TCGA, we have identified the overexpression of multiple enzymes involved in mediating the transfer and activation of long-chain fatty acids (LCFA) in GBM tumors compared to normal brain tissue. We are currently conducting metabolic flux studies to (1) assess the biokinetics of LCFA degradation and (2) establish exogenous versus endogenous LCFA preferences between patient-derived primary GBM cells and healthy glial and immune cells during steady state and glucose-deprivation.


2010 ◽  
Vol 76 (13) ◽  
pp. 4560-4565 ◽  
Author(s):  
Yasser Elbahloul ◽  
Alexander Steinbüchel

ABSTRACT Fatty acid ethyl esters (FAEEs) were produced in this study by the use of an engineered Escherichia coli p(Microdiesel) strain. Four fed-batch pilot scale cultivations were carried out by first using glycerol as sole carbon source for biomass production before glucose and oleic acid were added as carbon sources. Cultivations yielded a cell density of up to 61 ± 3.1 g of cell dry mass (CDM) per liter and a maximal FAEE content of 25.4% ± 1.1% (wt/wt) of CDM.


2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Kathryn C Chatfield ◽  
Genevieve C Sparagna ◽  
Sarah Chau ◽  
Michael J Bennett ◽  
Adam J Chicco ◽  
...  

Organization of the mitochondrial electron transport chain (ETC) into a protein “supercomplex” has been shown to be critical for optimal mitochondrial respiration, and is dependent on the phospholipid composition of the inner mitochondrial membrane. A close physical interaction between the ETC supercomplex and the fatty acid beta-oxidation system (FAO, which provides necessary reducing equivalents for ETC) has also been proposed. We have previously demonstrated that content of the primary mitochondrial phospholipid, cardiolipin, is altered in pediatric dilated cardiomyopathy (DCM), with evidence for its dysregulated biosynthesis. We hypothesized that altered cardiolipin content in pediatric DCM is correlated with altered supercomplex-associated ETC activity and mitochondrial fatty acid β-oxidation. A cross-sectional investigation was performed using myocardium from 16 children with DCM and 15 non-failing (NF) controls from the University of Colorado Heart Tissue Bank. Using blue native (BN) -PAGE with in-gel activity staining we demonstrated lower activity of supercomplex-associated complexes I (DCM 80% of NF, P<0.05) and IV (DCM 72% of NF, P<0.05) in pediatric DCM compared with NF controls. Using BN-PAGE and Western blot, as well as proteomic analysis of isolated supercomplex bands, we demonstrated interaction of the ETC supercomplex with FAO enzymes. Quantification of fatty acyl-CoAs was also performed in tissue from pediatric patients with DCM which demonstrated altered content of a subset of acyl-CoAs when compared to NF controls. We detected higher content of some C8, C10 and C12 CoAs in DCM compared with NF (P<0.05), with depletion of C18:1, C18:2, and C16 species (P<0.05). There was no difference between groups in free CoA or Acetyl-CoA. Taken together, these data suggest a potentially important interaction between the ETC supercomplex and long-chain β-oxidation enzymes, which may be altered on heart failure. We provide preliminary evidence for disrupted energy utilization in the failing pediatric heart.


Sign in / Sign up

Export Citation Format

Share Document