scholarly journals Recognition of Bergmann glial and ependymal cells in the mouse nervous system by monoclonal antibody.

1981 ◽  
Vol 90 (2) ◽  
pp. 448-458 ◽  
Author(s):  
I Sommer ◽  
C Lagenaur ◽  
M Schachner

A monoclonal antibody designated anti-Cl was obtained from a hybridoma clone isolated from a fusion of NS1 myeloma with spleen cells from BALB/c mice injected with homogenate of white matter from bovine corpus callosum. In the adult mouse neuroectoderm, C1 antigen is detectable by indirect immunohistology in the processes of Bergmann glial cells (also called Golgi epithelial cells) in the cerebellum and of Müller cells in the retina, whereas other astrocytes that express glial fibrillary acidic protein in these brain areas are negative for C1. In addition, C1 antigen is expressed in most, if not all, ependymal cells and in large blood vessels, but not capillaries. In the developing, early postnatal cerebellum, C1 antigen is not confined to Bergmann glial and ependymal cells but is additionally present in astrocytes of presumptive white matter and Purkinje cell layer. In the embryonic neuroectoderm, C1 antigen is already expressed at day 10, the earliest stage tested so far. The antigen is distinguished in radially oriented structures in telencephalon, pons, pituitary anlage, and retina. Ventricular cells are not labeled by C1 antibody at this stage. C1 antigen is not detectable in astrocytes of adult or nearly adult cerebella from the neurological mutant mice staggerer, reeler, and weaver, but is present in ependymal cells and large blood vessels. C1 antigen is expressed not only in the intact animal but also in cultured cerebellar astrocytes and fibroblastlike cells. It is localized intracellularly.

2015 ◽  
Vol 37 (2) ◽  
pp. 115-130 ◽  
Author(s):  
Beth A. Costine ◽  
Symeon Missios ◽  
Sabrina R. Taylor ◽  
Declan McGuone ◽  
Colin M. Smith ◽  
...  

Stimulation of postnatal neurogenesis in the subventricular zone (SVZ) and robust migration of neuroblasts to the lesion site in response to traumatic brain injury (TBI) is well established in rodent species; however, it is not yet known whether postnatal neurogenesis plays a role in repair after TBI in gyrencephalic species. Here we describe the anatomy of the SVZ in the piglet for the first time and initiate an investigation into the effect of TBI on the SVZ architecture and the number of neuroblasts in the white matter. Among all ages of immaturity examined the SVZ contained a dense mesh network of neurogenic precursor cells (doublecortin+) positioned directly adjacent to the ependymal cells (ventricular SVZ, Vsvz) and neuroblasts organized into chains that were distinct from the Vsvz (abventricular SVZ, Asvz). Though the architecture of the SVZ was similar among ages, the areas of Vsvz and Asvz neuroblast chains declined with age. At postnatal day (PND) 14 the white matter tracts have a tremendous number of individual neuroblasts. In our scaled cortical impact model, lesion size increased with age. Similarly, the response of the SVZ to injury was also age dependent. The younger age groups that sustained the proportionately smallest lesions had the largest SVZ areas, which further increased in response to injury. In piglets that were injured at 4 months of age and had the largest lesions, the SVZ did not increase in response to injury. Similar to humans, swine have abundant gyri and gyral white matter, providing a unique platform to study neuroblasts potentially migrating from the SVZ to the lesioned cortex along these white matter tracts. In piglets injured at PND 7, TBI did not increase the total number of neuroblasts in the white matter compared to uninjured piglets, but redistribution occurred with a greater number of neuroblasts in the white matter of the hemisphere ipsilateral to the injury compared to the contralateral hemisphere. At 7 days after injury, less than 1% of neuroblasts in the white matter were born in the 2 days following injury. These data show that the SVZ in the piglet shares many anatomical similarities with the SVZ in the human infant, and that TBI had only modest effects on the SVZ and the number of neuroblasts in the white matter. Piglets at an equivalent developmental stage to human infants were equipped with the largest SVZ and a tremendous number of neuroblasts in the white matter, which may be sufficient in lesion repair without the dramatic stimulation of neurogenic machinery. It has yet to be determined whether neurogenesis and migrating neuroblasts play a role in repair after TBI and/or whether an alteration of normal migration during active postnatal population of brain regions is beneficial in species with gyrencephalic brains.


2021 ◽  
Author(s):  
Ragini S Phansalkar ◽  
Josephine Krieger ◽  
Mingming Zhao ◽  
Sai Saroja Kolluru ◽  
Robert C Jones ◽  
...  

Most cell fate trajectories during development follow a diverging, tree-like branching pattern, but the opposite can occur when distinct progenitors contribute to the same cell type. During this convergent differentiation, it is unknown if cells "remember" their origins transcriptionally or whether this influences cell behavior. Most coronary blood vessels of the heart develop from two different progenitor sources-the endocardium (Endo) and sinus venosus (SV)-but whether transcriptional or functional differences related to origin are retained is unknown. We addressed this by combining lineage tracing with single-cell RNA sequencing (scRNAseq) in embryonic and adult mouse hearts. Shortly after coronary development begins, capillary ECs transcriptionally segregated into two states that retained progenitor-specific gene expression. Later in development, when the coronary vasculature is well-established but still remodeling, capillary ECs again segregated into two populations, but transcriptional differences were related to tissue localization rather than lineage. Specifically, ECs in the heart septum expressed genes indicative of increased local hypoxia and decreased blood flow. Adult capillary ECs were more homogeneous and lacked indications of either lineage or location. In agreement, SV- and Endo-derived ECs in adult hearts displayed similar responses to injury. Finally, scRNAseq of developing human coronary vessels indicated that the human heart followed similar principles. Thus, over the course of development, transcriptional heterogeneity in coronary ECs is first influenced by lineage, then by location, until heterogeneity disappears in the homeostatic adult heart. These results highlight the plasticity of ECs during development, and the validity of the mouse as a model for human coronary development.


2021 ◽  
Author(s):  
Valery Visser ◽  
Henry Rusinek ◽  
Johannes Weickenmeier

Abstract Deep and periventricular white matter hyperintensities (dWMH/pvWMH) are bright appearing white matter tissue lesions in T2-weighted fluid attenuated inversion recovery magnetic resonance images and are frequent observations in the aging human brain. While early stages of these white matter lesions are only weakly associated with cognitive impairment, their progressive growth is a strong indicator for long-term functional decline. DWMHs are typically associated with vascular degeneration in diffuse white matter locations; for pvWMHs, however, no unifying theory exists to explain their consistent onset around the horns of the lateral ventricles. We use patient imaging data to create anatomically accurate finite element models of the lateral ventricles, white and gray matter, and cerebrospinal fluid, as well as to reconstruct their WMH volumes. We simulated the mechanical loading of the ependymal cells forming the primary brain-fluid interface, the ventricular wall, and its surrounding tissues at peak ventricular pressure during the hemodynamic cycle. We observe that both the maximum principal tissue strain and the largest ependymal cell stretch consistently localize in the anterior and posterior horns. Our simulations show that ependymal cells experience a loading state that causes the ventricular wall to be stretched thin. Moreover, we show that maximum wall loading coincides with the pvWMH locations observed in our patient scans. These results warrant further analysis of white matter pathology in the periventricular zone that includes a mechanics-driven deterioration model for the ventricular wall.


1995 ◽  
Vol 108 (7) ◽  
pp. 2655-2661 ◽  
Author(s):  
C.J. Drake ◽  
D.A. Cheresh ◽  
C.D. Little

Experimental data in this study demonstrate that integrin alpha v beta 3 is fundamentally involved in the maturation of blood vessels during embryonic neovascularization (vasculogenesis). Integrin alpha v beta 3 was specifically expressed on the surface of angioblasts during vessel development in quail embryos and vitronectin, a ligand for alpha v beta 3, localized to the basal surface of these cells. More importantly, microinjection of the anti-alpha v beta 3 monoclonal antibody, LM609, disrupted the normal pattern of vascular development. After exposure to LM609 the angioblasts in experimental embryos appeared as clusters of rounded cells lacking normal cellular protrusions. This led to disruption of lumen formation and abnormal vessel patterning. These findings demonstrate that during vasculogenesis ligation of integrin alpha v beta 3 on the surface of primordial endothelial cells is critical for the differentiation and maturation of blood vessels. Similar studies on chicken chorioallantoic membrane showed that LM609 blocks angiogenesis. Together the two studies suggest that integrin alpha v beta 3 plays a role in neovascularization of tissues.


2020 ◽  
Vol 23 (3) ◽  
pp. 665-672
Author(s):  
Giang Huong Ta ◽  
Huy Quoc Nguyen ◽  
Quan Dang Nguyen

Introduction: CD45 is a common marker of leukocytes. Anti-human CD45 monoclonal antibody (MAb) has been used widely in diagnosing and monitoring hematologic diseases. The aim of this study was to generate an anti-human CD45 MAb, which can be used in research and diagnosis. Methods: Recombinant human CD45RO antigen was expressed from E. coli BL21 (DE3), purified and analyzed by SDS-PAGE and Western blotting. The purified CD45RO antigen was used to immunize Balb/c mice. Spleen cells from immunized mouse were collected and fused with P3X63Ag8.653 myeloma cells to form hybridoma. Anti-CD45 antibody-secreting capacity of hybridoma clones was evaluated by ELISA assay. Anti-CD45 MAb from the culture supernatant of the chosen hybridoma clone was purified by affinity chromatography. The MAb was characterized the biochemical characteristics and biological activity. Results: Recombinant human CD45RO antigen was expressed and purified from E.coli BL21 (DE3). Injection of purified CD45RO antigen provoked the immune response in Balb/c mice. Hybridoma clones were generated successfully by the fusion of spleen cells from the selected immunized-mouse and myeloma cells. Among these hybridoma clones, one with the highest yield of MAb production was identified. The isotype of the anti-CD45 MAb created in this work is IgG2b, while its the light chain is kappa (k) type. The affinity of this MAb with CD45RO antigen is high with Kd value at the picomolar level. The anti-CD45 MAb can interact with CD45 naturally expressed on the surface of Jurkat cells in Western blotting and fluorescent immuno-staining assay. Conclusion: We have developed successfully an anti-human CD45 MAb using hybridoma technology, which can recognize CD45 in ELISA, Western blotting, and fluorescent immuno-staining analysis. Although further investigations are necessary, obviously, our anti-human CD45 MAb is potential for research and diagnosis applications.


1983 ◽  
Vol 158 (4) ◽  
pp. 1307-1318 ◽  
Author(s):  
P B Hausman ◽  
C E Moody ◽  
J B Innes ◽  
J J Gibbons ◽  
M E Weksler

Monoclonal antibodies with specificity for autoreactive murine T cells have been developed. These antibodies inhibit proliferative response of splenic T cells activated by syngeneic spleen cells. These antibodies have no effect on the proliferative response of T cells activated by allogeneic spleen cells or PHA. The number of splenic T cells that react with these monoclonal antibodies is comparable in several normal mouse strains.


1984 ◽  
Vol 98 (3) ◽  
pp. 971-979 ◽  
Author(s):  
Y J Wan ◽  
T C Wu ◽  
A E Chung ◽  
I Damjanov

Two monoclonal antibodies raised against laminin isolated from a mouse parietal yolk sac cell line were used for immunohistochemical studies of basement membranes of the mouse embryo and various fetal and adult tissues. No immunoreactivity with either of the two monoclonal antibodies could be detected in the preimplantation-stage embryos, although it has been shown that these embryos contain extracellular laminin reactive with the conventional polyclonal antilaminin antibodies. Reichert's membrane in early postimplantation stages of development reacted with the monoclonal antibody LAM-I but not with the antibody LAM-II. However, from day 8 of pregnancy onward the Reichert's membrane reacted with both antibodies. Basement membranes of the embryo proper were unreactive with both monoclonal antibodies until day 12 of pregnancy. By day 14 some basement membranes of the fetal tissues became reactive with one or both monoclonal antibodies, whereas others remained still unreactive. In the 17-d fetus and the newborn mouse most of the basement membranes reacted with both monoclonal antibodies, whereas others still reacted with only one. Similar heterogeneity in the immunoreactivity of basement membranes of various tissues was noted in the adult mouse as well. These results indicate that the immunoreactivity of laminin in the extracellular matrix changes during development and that the basement membranes in various anatomic locations display heterogeneity even in the adult mouse.


Development ◽  
1975 ◽  
Vol 33 (2) ◽  
pp. 403-417
Author(s):  
Brian P. Hayes ◽  
Alan Roberts

The distribution of intercellular junctions, other than synapses and their precursors, has beendescribed in the developing spinal cord of Xenopus laevis between the neurula andfree swimming tadpole stages. At the neurocoel, ventricular cells are joined in the apical contactzone by a sequence of junctions which usually has one or more intermediate junctions but often also includes close appositions, gap junctions and desmosomes. This apical complex is more diverse than that reported in other vertebrate embryos and between ependymal cells in the adult central nervous system. Gap junctions are also found between ventricular cells and their processes near the external cord surface. However, no other special junctions occur in this location under the basementlamella which surrounds the cord. Punctate intermediate junctions are generally distributed between undifferentiated and differentiating cells and their processes but were not found in neuropil after stage 28. These results are discussed in relation to cell movements during neural differentiation, possible effects on the freedom of movement of ions and molecules through extracellular pathways in the embryo, and possible intercytoplasmic pathways via gap junctions which may be responsible for the physiologically observed electrical coupling between neural tube cells.


1981 ◽  
Author(s):  
F Rotblat ◽  
A H Goodall ◽  
G Janossy ◽  
G Kemble ◽  
D P O’Brien ◽  
...  

A cell line that secretes a monoclonal antibody to factor IX has been produced by fusing spleen cells from a mouse that had been hyper immunised to purified factor IX with mouse myeloma cells (line P3-NSI/I-Ag4-1). Hybrid cells were selected and a monoclonal cell line has been established in culture. This cell line secretes an IgGl(k) antibody (RFF-IX/1) with high affinity for a site related to the coagulant function of factor IX.Monoclonal antibody was partially purified from ascitic fluid from mice implanted with the RFF-IX/1 secreting cells by precipitation at 50% saturation with ammonium sulphate. This fraction has typically 630 NIH units/ml anti IX activity and 13.5 mg/ml protein. It was coupled to cyanogen bromide activated Sepharose 2B in the ratio of 9 mg. protein/1 ml gel. A column containing 10 ml of this gel removed all the assayable factor IX from the first 280 ml of normal ci.trated plasma that was passed over it. After that volume small amounts of factor IX could be detected in the effluent. Subsequently 10-20% of the factor IX activity adsorbed could be recovered by eluting the column with 3 M potassium iodide.Immuno-affinity depleted plasma could be used as substrate in a one-stage factor IX assay under routine laboratory conditions and was undistinguishable for that purpose from severe Christmas disease plasma.


Sign in / Sign up

Export Citation Format

Share Document