scholarly journals IMMUNE RESPONSES IN VITRO

1972 ◽  
Vol 135 (3) ◽  
pp. 675-697 ◽  
Author(s):  
Carl W. Pierce ◽  
Susan M. Solliday ◽  
Richard Asofsky

The suppressive effects of monospecific goat anti-mouse globulins on primary immunoglobulin class-specific plaque-forming cell responses in mouse spleen cell cultures were investigated. Anti-µ suppressed responses in all immunoglobulin classes, whereas anti-γ1 and anti-γ2 suppressed the γ1 and γ2 responses but not γM or γA responses, and anti-γA suppressed only γA responses. The mechanism of action of the anti-µ was studied in detail because of its suppression of responses in all immunoglobulin classes. The anti-µ was specific for µ-chain determinants; its activity was dose dependent, but was not mediated by killing cells with surface µ-chain determinants. Free γM but not γG myeloma proteins in solution effectively competed with µ-bearing cells for the anti-µ. An excess of anti-µ was necessary in the cultures for 48 hr to insure complete suppression of 5-day responses. However, after removal of excess anti-µ at 48 hr, responses could be stimulated by newly added antigen in cultures where incubation was prolonged to 7 days. Anti-µ was most effective when added at the initiation of cultures and had no suppressive effect when added at 48 hr. Excess antigen did not effectively compete with anti-µ for antigen receptors. Precursors of antibody-forming cells were shown to be the cell population where the suppressive activity of anti-µ was mediated. The experiments suggest that anti-µ combines with µ-chain determinants in antigen-specific receptors on the surfaces of antibody-forming cell precursors, prevents effective stimulation by antigen and subsequent antibody production. To explain suppression of responses in all Ig classes by anti-µ, several models were proposed. It is not possible to determine from the data whether stimulation of precursor cells with γG or γA receptors requires concommitant stimulation of separate cells with only γM receptors, or whether cells bearing γM receptors are precommitted to or differentiate into cells capable of synthesis of other Ig classes, or whether receptors of γM and another Ig class are present on some virgin precursors or the second Ig receptor appears after antigenic stimulation.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 870-870
Author(s):  
Nina Rolf ◽  
Amina Kariminia ◽  
Sabine Ivison ◽  
Kirk R. Schultz

Abstract Abstract 870 Introduction: Despite high cure-rates achieved by an intense chemotherapy regimen in pediatric pre-B ALL, 20% of children suffer relapse after which they face limited therapy options and poor prognosis. New treatment options are urgently needed. Background: Hematopoietic cell transplantation (HCT) has become an important therapy for ALL-relapse, both by eradicating leukemic blasts through myeloablative chemotherapy and by inducing a graft-versus-leukemia effect (GVL). Inadequate post-HCT immune responses can increase risk of relapse, while a GVL effect often comes at the expense of graft-versus-host disease leading to significant morbidity and mortality. Stimulation of Toll-like receptors (TLRs), which detect conserved pathogen- and stressed-self-derived ligands, represents a possible strategy for augmenting anti-ALL immunogenicity. TLR stimulation of antigen-presenting cells induces the expression of co-stimulatory molecules and cytokines, resulting in Th1-polarized immune responses important for anti-tumor responses. Furthermore, it has been shown that TLR stimulation can increase the sensitivity of hematological malignancies to conventional chemotherapeutics (Spaner et al, Leukemia 2010). We have previously used agonists of endosome-localized TLR9 (synthetic CpG-ODN) to enhance anti-ALL immunity (Reid et al, Blood 2005). This approach, which was successful in eliminating leukemia and extending survival in a syngeneic mouse model of minimal residual disease (Seif et al, Blood 2009), is now entering a phase I clinical trial (TACL group). However, our recent research demonstrated that TLR2 receptors, localized on the surface and thus independent of endocytosis, are more abundantly and consistently expressed on pre-B ALL cells. Unlike most other TLRs, which are functionally active as homodimers, TLR2s can form heterodimers with TLR1 or TLR6 suggesting that TLR2 ligands can modulate multiple downstream signaling pathways. Altogether, TLR2 agonists may have better efficacy in generating anti-B-ALL immunity, apoptosis and chemosensitivity. Objective: We tested the hypothesis that i) TLR2 agonists increase pre-B ALL blast sensitivity to doxorubicin (DOX) and asparaginase (ASP) in vitro. We further investigated if ii) distinctive synthetic TLR2 agonists (TLR2/6: Pam2CSK4=Pam2, TLR2/1: Pam3CSK4=Pam3 and FSL-1) differ in their ability to 1) transduce specific signaling pathways, 2) induce apoptosis, and 3) augment pre B-ALL cell immunogenicity. Methods: Pre-B ALL cell lines pre-treated with TLR2 agonists were compared to untreated samples in vitro using the following methods: 1) NFkB phosphorylation (pNFkB) and IkB degradation was detected by flow cytometry in a time and dose-dependent manner; 2) Induction of apoptosis/necrosis of blasts by TLR2 stimulation was examined by flow cytometric detection of AnnexinV/7AAD. 3)In vitro augmentation of immunogenicity was investigated by measuring induction of co-stimulatory molecules and increment of allogeneic T-cell proliferation. Results: 1) Pam2 rapidly and potently induced NFkB signaling (pNFkB 23–42% at 1ug/ml after 15–30min), while Pam3 (10ug/ml) displayed a slow and continuous increment at 60min, thus underlining the differences in signaling kinetics. 2) Pam3 stimulation induced significant, dose-dependent cell death: 36% (6hr), 66% (24hr), 81% (48hr) at 10ug/ml. Unexpectedly, both TLR2/6 agonists, Pam2 and FSL-1, did not induce comparable degree of cell death. Thus, Pam3 killed pre-B ALL cells more potently than therapeutic levels of Doxorubicin (0.005ug/ml) at the earliest time point of 6hr (8.5%) with equal cytotoxicity at 24hr (44%) and 48hr (93%). 3) All TLR2 agonists induced a comparably high expression of CD40/80/86 after 48hr (83-93%/63-76%/84-86%). However, only Pam3 induced a dose-dependent, early CD40 expression at 6hr (32%) and 24hr (60%). Furthermore, blast pre-treatment with Pam3 (but not Pam2) increased the sensitivity to ASP (49%/73% live cells with/without Pam3, respectively). Finally, there was a 30% increase in immunogenicity of pre B-ALL blasts by Pam3 in T-cell alloreactivity studies when compared to medium. Conclusion: TLR2 agonists increased anti-ALL immunogenicity in vitro. Pam3 also had strong cell-death inducing qualities and sensitized pre-B ALL blasts to chemotherapy. This supports that TLR2 agonists have promise for improving relapsed pre-B ALL cure-rates. Disclosures: No relevant conflicts of interest to declare.


npj Vaccines ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mauro Di Pilato ◽  
Miguel Palomino-Segura ◽  
Ernesto Mejías-Pérez ◽  
Carmen E. Gómez ◽  
Andrea Rubio-Ponce ◽  
...  

AbstractNeutrophils are innate immune cells involved in the elimination of pathogens and can also induce adaptive immune responses. Nα and Nβ neutrophils have been described with distinct in vitro capacity to generate antigen-specific CD8 T-cell responses. However, how these cell types exert their role in vivo and how manipulation of Nβ/Nα ratio influences vaccine-mediated immune responses are not known. In this study, we find that these neutrophil subtypes show distinct migratory and motility patterns and different ability to interact with CD8 T cells in the spleen following vaccinia virus (VACV) infection. Moreover, after analysis of adhesion, inflammatory, and migration markers, we observe that Nβ neutrophils overexpress the α4β1 integrin compared to Nα. Finally, by inhibiting α4β1 integrin, we increase the Nβ/Nα ratio and enhance CD8 T-cell responses to HIV VACV-delivered antigens. These findings provide significant advancements in the comprehension of neutrophil-based control of adaptive immune system and their relevance in vaccine design.


1996 ◽  
Vol 63 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Chun W. Wong ◽  
Geoffrey O. Regester ◽  
Geoffrey L. Francis ◽  
Dennis L. Watson

SummaryStudies on the immunomodulatory activities of ruminant milk and colostral whey fractions were undertaken. By comparing with boiled colostral whey in a preliminary experiment, a putative heat-labile immunostimulatory factor for antibody responses was found to be present in ovine colostral whey. Studies were then undertaken in sheep in which the efferent prefemoral lymphatic ducts were cannulated bilaterally, and immune responses in the node were measured following subcutaneous injection in the flank fold of whey protein preparations of various purities. A significant sustained decline of efferent lymphocyte output was observed following injection with autologous crude milk whey or colostral whey preparations, but no changes were observed in interferon-gamma levels in lymph plasma. Two bovine milk whey fractions (lactoperoxidase and lactoferrin) of high purity were compared in bilaterally cannulated sheep. A transient decline over the first 6 h was seen in the efferent lymphocyte output and lymph flow rate after injection of both fractions. A significant difference was seen between the two fractions in interferongamma levels in lymph at 6 h after injection. However, no significant changes in the proportion of the various efferent lymphocyte phenotypes were seen following either treatment. Whereas both fractions showed a significant inhibitory effect in a dose-dependent manner on the proliferative response of T lymphocytes, but not B lymphocytes, to mitogenic stimulation in vitro, no similar changes were seen following in vivo stimulation with these two fractions.


2011 ◽  
Vol 19 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Jin Huk Choi ◽  
Joe Dekker ◽  
Stephen C. Schafer ◽  
Jobby John ◽  
Craig E. Whitfill ◽  
...  

ABSTRACTThe immune response to recombinant adenoviruses is the most significant impediment to their clinical use for immunization. We test the hypothesis that specific virus-antibody combinations dictate the type of immune response generated against the adenovirus and its transgene cassette under certain physiological conditions while minimizing vector-induced toxicity.In vitroandin vivoassays were used to characterize the transduction efficiency, the T and B cell responses to the encoded transgene, and the toxicity of 1 × 1011adenovirus particles mixed with different concentrations of neutralizing antibodies. Complexes formed at concentrations of 500 to 0.05 times the 50% neutralizing dose (ND50) elicited strong virus- and transgene-specific T cell responses. The 0.05-ND50formulation elicited measurable anti-transgene antibodies that were similar to those of virus alone (P= 0.07). This preparation also elicited very strong transgene-specific memory T cell responses (28.6 ± 5.2% proliferation versus 7.7 ± 1.4% for virus alone). Preexisting immunity significantly reduced all responses elicited by these formulations. Although lower concentrations (0.005 and 0.0005 ND50) of antibody did not improve cellular and humoral responses in naïve animals, they did promote strong cellular (0.005 ND50) and humoral (0.0005 ND50) responses in mice with preexisting immunity. Some virus-antibody complexes may improve the potency of adenovirus-based vaccines in naïve individuals, while others can sway the immune response in those with preexisting immunity. Additional studies with these and other virus-antibody ratios may be useful to predict and model the type of immune responses generated against a transgene in those with different levels of exposure to adenovirus.


1972 ◽  
Vol 136 (2) ◽  
pp. 241-260 ◽  
Author(s):  
Norman R. Klinman

Cell transfers to carrier-immunized irradiated mice have permitted an analysis of the in vitro stimulation of clonal precursors of anti-2,4-dinitrophenyl (DNP) antibody-producing cells derived from both immune and nonimmune mice. The results indicate that: (a) carrier-specific enhancement is obligatory for stimulation of primary precursor cells and increases both the size and number of detectable foci derived from secondary precursors. (b) This carrier-specific enhancement is most apparent in the stimulation of precursors of high-affinity antibody producer cells. (c) The antibody produced by primary foci, like that of secondary foci, appears homogeneous. (d) The frequency of clonal precursors in normal spleens is 38% that in spleens from mice 4–8 months after immunization, and the number of such precursors in normal spleens can be reduced fivefold by specific suppression of donor mice with soluble antigen. (e) The average of association constants of primary monofocal antibodies, like that of primary serum antibody produced in carrier-primed mice, is less than 10-fold lower than that of secondary clonal or serum antibody. (f) The affinity of primary monofocal antibodies shows a slight dependence on stimulating antigen concentration; however, a minimum threshold affinity consonant with stimulation is apparent. (g) Free hapten inhibits antigenic stimulation of primary precursor cells at a much lower concentration than is required for the inhibition of secondary precursors. These results are interpreted as indicating that (a) primary stimulation, like secondary stimulation, results from the selective stimulation by antigen of a population of cells differing from one another in their potential antibody product but each having only a single such product; (b) the antigen receptors of primary cells interact with antigen as if they are monovalent while receptors of secondary cells evidence multivalence; (c) antigenic stimulation appears to require both a relatively high affinity of receptors for bound antigen and an interlinking of receptors through such antigen; stimulation is thus seen as resulting from a stabilization of receptors within antigen-receptor aggregates to the cell surface; (d) T-cells appear to serve both in cross-linking antigens and in amplifying the size of stimulated clones.


mBio ◽  
2014 ◽  
Vol 5 (3) ◽  
Author(s):  
Clara Maria Ausiello ◽  
Antonio Cassone

ABSTRACTThe resurgence of pertussis (whooping cough) in countries with high vaccination coverage is alarming and invites reconsideration of the use of current acellular pertussis (aP) vaccines, which have largely replaced the old, reactogenic, whole-cell pertussis (wP) vaccine. Some drawbacks of these vaccines in terms of limited antigenic composition and early waning of antibody levels could be anticipated by the results of in-trial or postlicensure human investigations of B- and T-cell responses in aP versus wP vaccine recipients or unvaccinated, infected children. Recent data in experimental models, including primates, suggest that generation of vaccines capable of a potent, though regulated, stimulation of innate immunity driving effective, persistent adaptive immune responses againstBordetella pertussisinfection should be privileged. Adjuvants that skew Th1/Th17 responses or new wP (detoxified or attenuated) vaccines should be explored. Nonetheless, the high merits of the current aP vaccines in persuading people to resume vaccination against pertussis should not be forgotten.


1983 ◽  
Vol 245 (4) ◽  
pp. G463-G469
Author(s):  
B. Richelsen ◽  
J. F. Rehfeld ◽  
L. I. Larsson

A technique for studying in vitro release of gastric hormones has been developed. The system utilizes nonenzymatically isolated antropyloric glands from humans or rats, which are perifused in a Bio-Gel P-2 column. The system permits the study of kinetics and dose-response characteristics using the glands as their own control. The glands were stimulated with carbachol and bombesin, and the antral peptides gastrin and somatostatin were measured. Bombesin and carbachol both evoked a dose-dependent stimulation of gastrin release, beginning at below 10(-10) M (bombesin) and 10(-7) M (carbachol). Carbachol inhibited the release of somatostatin in a dose-dependent manner, being maximally effective at 10(-6) M and then producing 60% inhibition of somatostatin release. Bombesin was without effect on antropyloric somatostatin release. These data suggest that the gastrin-stimulating effect of carbachol is partially or totally due to inhibition of somatostatin release, whereas bombesinergic stimulation of gastrin release must work in an independent manner. In addition, data on the effects of these substances on the release of gastrin and ACTH-like peptides from human antropyloric glands are presented. Due to the absence of local neural reflexes, this system is a useful supplement to the isolated perfused stomach model.


Cancers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 186 ◽  
Author(s):  
Miika Martikainen ◽  
Magnus Essand

Glioblastoma (GBM) is the most common type of primary brain tumor in adults. Despite recent advances in cancer therapy, including the breakthrough of immunotherapy, the prognosis of GBM patients remains dismal. One of the new promising ways to therapeutically tackle the immunosuppressive GBM microenvironment is the use of engineered viruses that kill tumor cells via direct oncolysis and via stimulation of antitumor immune responses. In this review, we focus on recently published results of phase I/II clinical trials with different oncolytic viruses and the new interesting findings in preclinical models. From syngeneic preclinical GBM models, it seems evident that oncolytic virus-mediated destruction of GBM tissue coupled with strong adjuvant effect, provided by the robust stimulation of innate antiviral immune responses and adaptive anti-tumor T cell responses, can be harnessed as potent immunotherapy against GBM. Although clinical testing of oncolytic viruses against GBM is at an early stage, the promising results from these trials give hope for the effective treatment of GBM in the near future.


1990 ◽  
Vol 5 (1) ◽  
pp. 55-60 ◽  
Author(s):  
L. B. O'Toole ◽  
K.J. Armour ◽  
C. Decourt ◽  
N. Hazon ◽  
B. Lahlou ◽  
...  

ABSTRACT An isolated in-vitro perifused interrenal gland preparation from the dogfish Scyliorhinus canicula was used to study production of quantitatively the major corticosteroid 1α-hydroxycorticosterone (1α-OH-B), measured by radioimmunoassay. Basal secretory rates were 877·1 ± 145 (s.e.m.) fmol/mg per 15 min (n=14) and the preparation remained viable for up to 22 h, as reflected in a brisk response to 10 μm cyclic AMP (cAMP) after this time. Steroid production responded in a dose-dependent manner to porcine ACTH, with 10 μm producing a maximum stimulation of 225% above the basal secretory rate. cAMP (10 μm) produced an increase of 278% above basal, while 1 μm forskolin increased basal secretory rates by 127%. [Val5]- and [Ile5]-angiotensin II (0·1 μm) increased 1α-OH-B production by 120 and 372% respectively over basal secretory rates. Increasing the concentration of K+ in the perfusate from 8 mm to 12, 18, 28 and 40 mm produced a significant rise only at 28 mm. Alterations in the concentration of Na+ and osmolarity of the perifusion medium had inconsistent effects on steroid production. Increased concentrations of urea (from 360 to 720 mm) increased the basal secretory rate by 121%, whilst reducing the concentration of urea (from 360 to 90 mm) had no effect.


2002 ◽  
Vol 260 (1-2) ◽  
pp. 219-234 ◽  
Author(s):  
Erin Mehlhop ◽  
Loreley A. Villamide ◽  
Ines Frank ◽  
Agegnehu Gettie ◽  
Christine Santisteban ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document