scholarly journals Cachectin/tumor necrosis factor mediates changes of skeletal muscle plasma membrane potential.

1986 ◽  
Vol 164 (4) ◽  
pp. 1368-1373 ◽  
Author(s):  
K J Tracey ◽  
S F Lowry ◽  
B Beutler ◽  
A Cerami ◽  
J D Albert ◽  
...  

Lethal infections are associated with cellular dysfunction as evidenced by a decrease in the resting transmembrane potential difference (Em) of skeletal muscle fibers. Endotoxin stimulation of macrophages evokes production of cachectin, a protein that has been implicated as a mediator of the lethal effects of endotoxemia. In the present study, rat skeletal muscle fiber Em decreased when incubated with recombinant human cachectin. The reduction of Em induced by cachectin occurred in a dose-related fashion and was inhibited by mAb against the monokine. Infusion of cachectin induced a decline of skeletal muscle Em in vivo, and suggests that cachectin may acutely mediate alterations of skeletal muscle membrane function after infection.

2000 ◽  
Vol 278 (3) ◽  
pp. C601-C611 ◽  
Author(s):  
Edward M. Balog ◽  
Bradley R. Fruen ◽  
Patricia K. Kane ◽  
Charles F. Louis

Inorganic phosphate (Pi) accumulates in the fibers of actively working muscle where it acts at various sites to modulate contraction. To characterize the role of Pi as a regulator of the sarcoplasmic reticulum (SR) calcium (Ca2+) release channel, we examined the action of Pi on purified SR Ca2+ release channels, isolated SR vesicles, and skinned skeletal muscle fibers. In single channel studies, addition of Pi to the cis chamber increased single channel open probability ( P o; 0.079 ± 0.020 in 0 Pi, 0.157 ± 0.034 in 20 mM Pi) by decreasing mean channel closed time; mean channel open times were unaffected. In contrast, the ATP analog, β,γ-methyleneadenosine 5′-triphosphate (AMP-PCP), enhanced P o by increasing single channel open time and decreasing channel closed time. Pi stimulation of [3H]ryanodine binding by SR vesicles was similar at all concentrations of AMP-PCP, suggesting Pi and adenine nucleotides act via independent sites. In skinned muscle fibers, 40 mM Pi enhanced Ca2+-induced Ca2+ release, suggesting an in situ stimulation of the release channel by high concentrations of Pi. Our results support the hypothesis that Pi may be an important endogenous modulator of the skeletal muscle SR Ca2+ release channel under fatiguing conditions in vivo, acting via a mechanism distinct from adenine nucleotides.


1995 ◽  
Vol 269 (2) ◽  
pp. R437-R444 ◽  
Author(s):  
C. H. Lang

Previous studies have demonstrated that in vivo injection of lipopolysaccharide (LPS) acutely stimulates glucose uptake (GU) in skeletal muscle. The purpose of the present study was to determine whether this enhanced GU is neurally mediated. In the first group of rats, a unilateral sciatic nerve transection was performed 3 h before injection of LPS, and in vivo GU was assessed using 2-[14C]deoxy-D-glucose 40 min after LPS injection. At this time, LPS-treated rats were hyperglycemic (12 mM), and insulin levels were not different from control rats. In the innervated leg, LPS increased GU 43-228%, depending on the muscle type. In contrast, LPS failed to increase GU in muscles from the denervated limb. In other experiments, somatostatin was infused to produce an insulinopenic condition before the injection of LPS. Despite insulinopenia, muscle GU was still increased by LPS. In control rats, in which the euglycemic hyperinsulinemic clamp technique was used, acute muscle denervation was shown to impair insulin-mediated GU in the presence of pharmacological, but not physiological, insulin levels. Non-insulin-mediated GU (NIMGU) was assessed in rats that were insulinopenic and hyperglycemic. In innervated muscle, NIMGU was increased 56-126 and 118-145% when the plasma glucose was elevated to 9 and 12 mM, respectively. In contrast, hyperglycemia-induced increases in NIMGU were attenuated in denervated muscle. These data demonstrate that 1) the early LPS-induced stimulation of muscle GU is mediated via a non-insulin-mediated pathway and 2) the LPS-induced increase in NIMGU in muscle is neurally mediated.


1990 ◽  
Vol 45 (6) ◽  
pp. 663-670 ◽  
Author(s):  
Virginia Massheimer ◽  
Luis M. Fernandez ◽  
Ana R. de Boland

Abstract Previous work has shown that 1,25-dihydroxy-vitamin D 3 rapidly increases calmodulin levels of skeletal muscle membranes without altering the muscle cell calmodulin content. Therefore, the effects of the sterol on the binding of calmodulin to specific muscle membrane proteins were investigated. Soleus muscles from vitamin D-deficient chicks were treated in vitro for short intervals (5-15 min) with physiological concentrations of 1,25-dihydroxy-vitamin D3. Proteins of mitochondria and microsomes isolated by differential centrifugation were separated on sodium dodecyl sulfate polyacrylamide gels. Calmodulin-binding proteins were identified by a [125I]calmodulin gel overlay procedure followed by autoradiography. 1,25-Dihydroxy- vitamin D3 increased the binding of labelled calmodulin to a major, calcium-independent, calmodulin-binding protein of 28 Kda localized in microsomes, and to minor calmodulin- binding proteins of 78 and 130 Kda proteins localized in mitochondria. The binding of [125I]calmodulin to these proteins was abolished by flufenazine or excess non-radioactive calmodulin. 1,25-Dihydroxy-vitamin D3 rapidly increased muscle tissue Ca uptake and cyclic AM P levels and stimulated the phosphorylation of several membrane proteins including those whose calmodulin-binding capacity potentiates. Analogously to the sterol, forskolin increased membrane calmodulin content, calmodulin binding to the 28 Kda microsomal protein and 45Ca uptake by soleus muscle preparations. Forskolin also induced a similar profile of changes in muscle membrane protein phosphorylation as the hormone. These results suggest that 1,25- dihydroxy-vitamin D 3 affects calmodulin distribution in muscle cells through cyclic AMP-dependent phosphorylation of membrane calmodulin-binding proteins. These changes may play a role in the stimulation of muscle Ca uptake by the sterol.


1958 ◽  
Vol 194 (2) ◽  
pp. 379-386 ◽  
Author(s):  
Irving B. Fritz ◽  
Don G. Davis ◽  
Robert H. Holtrop ◽  
Harold Dundee

The metabolism of C14-labeled acetate, octanoate and palmitate by isolated skeletal muscle (latissimus dorsi and diaphragm) from normal, fed rats has been examined. The rates at which these substrates were converted to C14O2 have been shown to vary with concentration, temperature, functional state of the muscle, and the presence of albumin. Increased concentration of fatty acids led to enhanced conversion of substrate to C14O2. Electrical stimulation of muscles under tension resulted in approximately a 60% increase in oxygen consumption and about a 100% rise in fatty acid oxidation. The addition of glucose did not alter the rate of fatty acid metabolism by muscle. The addition of bovine albumin at concentrations up to approximately 1 µm albumin/7 µm palmitate resulted in augmented palmitic acid oxidation. However, at concentrations of albumin greater than 1 µm albumin/7 µm palmitate, palmitic acid degradation by resting diaphragm was inhibited, suggesting a firmer binding of fatty acid to albumin. The Q10 for palmitic acid oxidation by resting diaphragm was 2.23 in the absence of added albumin between 25° and 37°C. The data are discussed in relation to the present concepts of fat metabolism and transport in vivo. It is suggested that fat degradation in isolated muscle may provide an energy source during activity.


2013 ◽  
Vol 111 (6) ◽  
pp. 996-1003 ◽  
Author(s):  
Gregory E. Peoples ◽  
Peter L. McLennan

Dietary fish oil modifies skeletal muscle membrane fatty acid composition and oxygen efficiency similar to changes in the myocardium. Oxygen efficiency is a key determinant of sustained force in mammalian skeletal muscle. Therefore, in the present study, we tested the effects of a fish-oil diet on skeletal muscle fatigue under the stress of contraction using the rat in vivo autologous perfused hindlimb model. For 8 weeks, male Wistar rats were fed a diet rich in saturated fat (SF), a diet rich in n-6 PUFA or a diet rich in long-chain (LC) n-3 PUFA DHA derived from fish oil. In anaesthetised, mechanically ventilated rats, with their hindlimbs perfused with arterial blood at a constant flow, the gastrocnemius–plantaris–soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6–12 V, 0·05 ms) to contract repetitively for 30 min. Rats fed the n-3 PUFA diet developed higher maximum twitch tension than those fed the SF and n-6 PUFA diets (P< 0·05) and sustained twitch tension through more repetitions before the tension declined to 50 % of the maximum twitch tension (P< 0·05). The n-3 PUFA group used less oxygen for tension developed and produced higher venous lactate concentrations with no difference in glycogen utilisation compared with the SF and n-6 PUFA groups. These results further support that incorporation of DHA into skeletal muscle membranes increases the efficiency of oxygen use over a range of contractile force and this is expressed as a higher sustained force and prolonged time to fatigue.


2020 ◽  
Author(s):  
Elahe Ganji ◽  
C. Savio Chan ◽  
Christopher W. Ward ◽  
Megan L. Killian

AbstractOptogenetics is an emerging alternative to traditional electrical stimulation to initiate action potentials in activatable cells both ex vivo and in vivo. Optogenetics has been commonly used in mammalian neurons and more recently, it has been adapted for activation of cardiomyocytes and skeletal muscle. Therefore, the aim of this study was to evaluate the stimulation feasibility and sustain isometric muscle contraction and limit decay for an extended period of time (1s), using non-invasive transdermal light activation of skeletal muscle (triceps surae) in vivo. We used inducible Cre recombination to target expression of Channelrhodopsin-2 (ChR2(H134R)-EYFP) in skeletal muscle (Acta1-Cre) in mice. Fluorescent imaging confirmed that ChR2 expression is localized in skeletal muscle and does not have specific expression in sciatic nerve branch, therefore, allowing for non-nerve mediated optical stimulation of skeletal muscle. We induced muscle contraction using transdermal exposure to blue light and selected 10Hz stimulation after controlled optimization experiments to sustain prolonged muscle contraction. Increasing the stimulation frequency from 10Hz to 40Hz increased the muscle contraction decay during prolonged 1s stimulation, highlighting frequency dependency and importance of membrane repolarization for effective light activation. Finally, we showed that optimized pulsed optogenetic stimulation of 10 Hz resulted in comparable ankle torque and contractile functionality to that of electrical stimulation. Our results demonstrate the feasibility and repeatability of non-invasive optogenetic stimulation of muscle in vivo and highlight optogenetic stimulation as a powerful tool for non-invasive in vivo direct activation of skeletal muscle.


Sign in / Sign up

Export Citation Format

Share Document