scholarly journals Neuraminidase-treated macrophages stimulate allogenic CD8+ T cells in the presence of exogenous interleukin 2.

1988 ◽  
Vol 168 (4) ◽  
pp. 1443-1456 ◽  
Author(s):  
Y Hirayama ◽  
K Inaba ◽  
M Inaba ◽  
T Kato ◽  
M Kitaura ◽  
...  

Prior work has shown that purified, resident, and inflammatory peritoneal macrophages are weak stimulators of the allogeneic MLR. We have identified conditions whereby thioglycollate-elicited macrophages become stimulatory, but primarily for the CD8+ T cell subset. The conditions were to treat the macrophages with neuraminidase and to supplement the MLR with rIL-2. These treatments together led to proliferative and cytotoxic responses by isolated CD8+ but not CD4+ T cells. Likewise when MHC-congenic strains were evaluated, an MLR was observed across isolated class I but not class II MHC barriers. Pretreatment of the macrophages with IFN-gamma further enhanced expression of class I MHC products and stimulatory activity, but did not seem essential. While these treatments did not render macrophages stimulatory for an MLR in purified CD4+ cells, blastogenesis of CD4+ cells was observed when the MLR involved bulk T cells. Small allogeneic B lymphocytes behaved similarly to macrophages, in the pretreatment with neuraminidase and supplementation with rIL-2 rendered B cells stimulatory for allogeneic, enriched, CD8+, but not CD4+, T cells. Spleen adherent cells, which are mixtures of macrophages and dendritic cells, stimulated both CD4+ and CD8+ T cells, and neither neuraminidase nor exogenous IL-2 was required. We think that these data suggest that most macrophages and small B cells lack three important functions of dendritic cells: a T cell-binding function that can be remedied by neuraminidase treatment, a T cell growth factor-inducing function that can be bypassed with exogenous IL-2, and an IL-2 responsiveness function that is required by CD4+ lymphocytes.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1981-1981 ◽  
Author(s):  
Mark Bosch ◽  
Manveer Dhadda ◽  
Mette Hoegh-Petersen ◽  
Yiping Liu ◽  
Laura M Hagel ◽  
...  

Abstract Abstract 1981 Introduction: Immune reconstitution after HCT is important for curbing infections and malignancy. ATG has been increasingly used to prevent graft-vs-host disease (GVHD), however, its impact on immune reconstitution has not been well studied. Here we studied (1) immune reconstitution after ATG-conditioned HCT, (2) compared it to non-ATG-conditioned HCT, and (3) determined factors influencing the immune reconstitution. Patients and Methods: Immune subset cell counts were determined on day 28, 56, 84, 180, 365 and 730 post transplant in 125 recipients of allogeneic filgrastim-mobilized blood stem cells who received ATG (Thymoglobulin, 4.5 mg/kg) during conditioning. The subset counts were also determined in 47 non-ATG-conditioned patients (otherwise similarly treated). Subset counts (in blood) and ATG levels (in serum) were quantified by flow cytometry. Mann-Whitney rank sum test was used to compare subset counts (1) in ATG-conditioned patients vs donors, (2) in ATG-conditioned patients vs non-ATG-conditioned patients, and (3) between subgroups of ATG-conditioned patients; Spearman rank correlation test was used to determine associations between subset counts and ordinal variables like ATG levels. Results: (1) After ATG-conditioned HCT, the counts of the following subsets normalized (became not significantly lower than in donors) by day 28: NK cells, monocytes, myeloid dendritic cells (MDCs), and plasmacytoid dendritic cells (PDCs). The counts of the following subsets normalized by day 84: memory/effector CD8 T cells, and CD4−CD8− T cells. The counts of naïve B cells normalized by day 180. The counts of the following subsets have not normalized by day 365 or 730: memory B cells (both isotype switched and unswitched), both naïve and memory/effector CD4 T cells, naïve CD8 T cells, CD4+CD8+ T cells, and invariant NKT (iNKT) cells. (2) Compared to non-ATG-conditioned HCT, counts of B cells, CD4 T cells and CD8 T cells were significantly lower after ATG-conditioned HCT on day 28. Thereafter, recovery of both naïve and memory B cells and memory/effector CD8 T cells was significantly faster in ATG-conditioned patients, leading to higher total B and higher total CD8 T cell counts on day 84 (Figure). On the contrary, recovery of naïve CD8 T cells and both naïve and memory/effector CD4 T cells was significantly slower, the latter leading to low total CD4 T cell counts throughout the first year (Figure). (3) Reconstitution after ATG-conditioned HCT was influenced by (a) the number of cells of the same subset transferred with the graft in case of increased memory B cells, naïve CD4 T cells, naïve CD8 T cells, iNKT cells and MDCs, (b) age of recipient in case of decreased naïve CD4 T cells and naïve CD8 T cells, (c) cytomegalovirus (CMV) serostatus of recipient in case of increased memory/effector T cells, (d) GVHD in case of increased naïve B cells, and (e) day 7 or 28 ATG levels in case of decreased T cell subsets. Conclusion: (1) Reconstitution after ATG conditioned HCT is very fast for NK cells, monocytes, MDCs and PDCs, fast for memory/effector CD8 T cells and CD4−CD8− T cells, slow for naïve B cells, and very slow for memory B cells, both naïve and memory/effector CD4 T cells, naïve CD8 T cells, CD4+CD8+ T cells and iNKT cells. (2) Compared to no ATG, the patients conditioned with ATG have lower counts of B and T cells on day 28. Thereafter, the ATG-conditioned patients have faster recovery of both naïve and memory B cells and memory/effector CD8 T cells, and slower recovery of both naïve and memory/effector CD4 T cells and naïve CD8 T cells. (3) Similar to what has been described for non-ATG-conditioned HCT, reconstitution after ATG-conditioned HCT is influenced by the number of the immune cells transferred with the graft, recipient age, recipient CMV serostatus and GVHD. Moreover, the reconstitution after ATG-conditioned HCT is influenced by ATG clearance. Disclosures: No relevant conflicts of interest to declare.


1992 ◽  
Vol 176 (5) ◽  
pp. 1431-1437 ◽  
Author(s):  
M Croft ◽  
D D Duncan ◽  
S L Swain

Because of the low frequency of T cells for any particular soluble protein antigen in unprimed animals, the requirements for naive T cell responses in specific antigens have not been clearly delineated and they have been difficult to study in vitro. We have taken advantage of mice transgenic for the V beta 3/V alpha 11 T cell receptor (TCR), which can recognize a peptide of cytochrome c presented by IEk. 85-90% of CD4+ T cells in these mice express the transgenic TCR, and we show that almost all such V beta 3/V alpha 11 receptor-positive cells have a phenotype characteristic of naive T cells, including expression of high levels of CD45RB, high levels of L-selectin (Mel-14), low levels of CD44 (Pgp-1), and secretion of interleukin 2 (IL-2) as the major cytokine. Naive T cells, separated on the basis of CD45RB high expression, gave vigorous responses (proliferation and IL-2 secretion) to peptide antigen presented in vitro by a mixed antigen-presenting cell population. At least 50% of the T cell population appeared to respond, as assessed by blast transformation, entry into G1, and expression of increased levels of CD44 by 24 h. Significant contributions to the response by contaminating memory CD4+ cells were ruled out by demonstrating that the majority of the CD45RB low, L-selectin low, CD44 high cells did not express the V beta 3/V alpha 11 TCR and responded poorly to antigen. We find that proliferation and IL-2 secretion of the naive CD4 cells is minimal when resting B cells present peptide antigen, and that both splenic and bone marrow-derived macrophages are weak stimulators. Naive T cells did respond well to high numbers of activated B cells. However, dendritic cells were the most potent stimulators of proliferation and IL-2 secretion at low cell numbers, and were far superior inducers of IL-2 at higher numbers. These studies establish that naive CD4 T cells can respond vigorously to soluble antigen and indicate that maximal stimulation can be achieved by presentation of antigen on dendritic cells. This model should prove very useful in further investigations of activation requirements and functional characteristics of naive helper T cells.


Blood ◽  
2012 ◽  
Vol 119 (4) ◽  
pp. 967-977 ◽  
Author(s):  
Agostinho Carvalho ◽  
Antonella De Luca ◽  
Silvia Bozza ◽  
Cristina Cunha ◽  
Carmen D'Angelo ◽  
...  

Abstract Aspergillus fumigatus is a model fungal pathogen and a common cause of severe infections and diseases. CD8+ T cells are present in the human and murine T-cell repertoire to the fungus. However, CD8+ T-cell function in infection and the molecular mechanisms that control their priming and differentiation into effector and memory cells in vivo remain elusive. In the present study, we report that both CD4+ and CD8+ T cells mediate protective memory responses to the fungus contingent on the nature of the fungal vaccine. Mechanistically, class I MHC-restricted, CD8+ memory T cells were activated through TLR3 sensing of fungal RNA by cross-presenting dendritic cells. Genetic deficiency of TLR3 was associated with susceptibility to aspergillosis and concomitant failure to activate memory-protective CD8+ T cells both in mice and in patients receiving stem-cell transplantations. Therefore, TLR3 essentially promotes antifungal memory CD8+ T-cell responses and its deficiency is a novel susceptibility factor for aspergillosis in high-risk patients.


2009 ◽  
Vol 206 (10) ◽  
pp. 2253-2269 ◽  
Author(s):  
Kensuke Takada ◽  
Stephen C. Jameson

Previous studies have suggested that naive CD8 T cells require self-peptide–major histocompatability complex (MHC) complexes for maintenance. However, interpretation of such studies is complicated because of the involvement of lymphopenic animals, as lymphopenia drastically alters naive T cell homeostasis and function. In this study, we explored naive CD8 T cell survival and function in nonlymphopenic conditions by using bone marrow chimeric donors and hosts in which class I MHC expression is absent or limited to radiosensitive versus radioresistant cells. We found that long-term survival of naive CD8 T cells (but not CD4 T cells) was impaired in the absence of class I MHC. However, distinct from this effect, class I MHC deprivation also enhanced naive CD8 T cell responsiveness to low-affinity (but not high-affinity) peptide–MHC ligands. We found that this improved sensitivity was a consequence of up-regulated CD8 levels, which was mediated through a transcriptional mechanism. Hence, our data suggest that, in a nonlymphopenic setting, self-class I MHC molecules support CD8 T cell survival, but that these interactions also attenuate naive T cell sensitivity by dynamic tuning of CD8 levels.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 408-408 ◽  
Author(s):  
Yoshiyuki Takahashi ◽  
S. Chakrabarti ◽  
R. Sriniivasan ◽  
A. Lundqvist ◽  
E.J. Read ◽  
...  

Abstract AMD3100 (AMD) is a bicyclam compound that rapidly mobilizes hematopoietic progenitor cells into circulation by inhibiting stromal cell derived factor-1 binding to its cognate receptor CXCR4 present on CD34+ cells. Preliminary data in healthy donors and cancer patients show large numbers of CD34+ cells are mobilized following a single injection of AMD3100. To determine whether AMD3100 mobilized cells would be suitable for allografting, we performed a detailed phenotypic analysis using 6 color flow cytometry (CYAN Cytometer MLE) of lymphocyte subsets mobilized following the administration of AMD3100, given as a single 240mcg/kg injection either alone (n=4) or in combination with G-CSF (n=2: G-CSF 10 mcg/kg/day x 5: AMD3100 given on day 4). Baseline peripheral blood (PB) was obtained immediately prior to mobilization; in recipients who received both agents, blood was analyzed 4 days following G-CSF administration as well as 12 hours following administration of AMD3100 and a 5th dose of G-CSF. AMD3100 alone significantly increased from baseline the PB WBC count (2.8 fold), Absolute lymphocyte count (ALC: 2.5 fold), absolute monocyte count (AMC: 3.4 fold), and absolute neutrophil count (ANC: 2.8 fold). Subset analysis showed AMD3100 preferentially increased from baseline PB CD34+ progenitor counts (5.8 fold), followed by CD19+ B-cells (3.7 fold), CD14+ monocytes (3.4 fold), CD8+ T-cells (2.5 fold), CD4+ T-cells (1.8 fold), with a smaller increase in CD3−/CD16+ or CD56+ NK cell counts (1.6 fold). There was no change from baseline in the % of CD4+ or CD8+ T-cell expressing CD45RA, CD45RO, or CD56, CD57, CD27, CD71 or HLA-DR. In contrast, there was a decline compared to baseline in the mean percentage of CD3+/CD4+ T-cells expressing CD25 (5.5% vs 14.8%), CD62L (12.1% vs 41.1%), CCR7 (2.1% vs 10.5%) and CXCR4 (0.5% vs 40.9%) after AMD3100 administration; similar declines in expression of the same 4 surface markers were also observed in CD3+/CD8+ T-cells. A synergistic effect on the mobilization of CD34+ progenitors, CD19+ B cells, CD3+ T-cells and CD14+ monocytes occurred when AMD3100 was combined with G-CSF (Figure). In those receiving both AMD3100 and G-CSF, a fall in the % of T-cells expressing CCR7 and CXCR4 occurred 12 hours after the administration of AMD3100 compared to PB collected after 4 days of G-CSF; no other differences in the expression of a variety activation and/or adhesion molecules on T-cell subsets were observed. Whether differences in lymphocyte subsets mobilized with AMD3100 alone or in combination with G-CSF will impact immune reconstitution or other either immune sequela (i.e. GVHD, graft-vs-tumor) associated with allogeneic HCT is currently being assessed in an animal model of allogeneic transplantation.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2346-2346
Author(s):  
Mette Hoegh-Petersen ◽  
Minaa Amin ◽  
Yiping Liu ◽  
Alejandra Ugarte-Torres ◽  
Tyler S Williamson ◽  
...  

Abstract Abstract 2346 Introduction: Polyclonal rabbit-anti-human T cell globulin may decrease the likelihood of graft-vs-host disease (GVHD) without increasing the likelihood of relapse. We have recently shown that high levels of antithymocyte globulin (ATG) capable of binding to total lymphocytes are associated with a low likelihood of acute GVHD grade 2–4 (aGVHD) as well as chronic GVHD needing systemic therapy (cGVHD) but not increased likelihood of relapse (Podgorny PJ et al, BBMT 16:915, 2010). ATG is polyclonal, composed of antibodies for antigens expressed on multiple cell subsets, including T cells, B cells, NK cells, monocytes and dendritic cells. These cell subsets may play a role in the pathogenesis of GVHD. The anti-GVHD effect of ATG may be mediated through killing/inhibition of one or several of these cell subsets (eg, T cells) or their subsets (eg, naïve T cells as based on mouse experiments naïve T cells are thought to play a major role in the pathogenesis of GVHD). To better understand the mechanism of action of ATG on GVHD, we set out to determine levels of which ATG fraction (capable of binding to which cell subset) are associated with subsequent development of GVHD. Patients and Methods: A total of 121 patients were studied, whose myeloablative conditioning included 4.5 mg/kg ATG (Thymoglobulin). Serum was collected on day 7. Using flow cytometry, levels of the following ATG fractions were determined: capable of binding to 1. naïve B cells, 2. memory B cells, 3. naïve CD4 T cells, 4. central memory (CM) CD4 T cells, 5. effector memory (EM) CD4 T cells, 6. naïve CD8 T cells, 7. CM CD8 T cells, 8. EM CD8 T cells not expressing CD45RA (EMRA-), 9. EM CD8 T cells expressing CD45RA (EMRA+), 10. cytolytic (CD16+CD56+) NK cells, 11. regulatory (CD16-CD56high) NK cells, 12. CD16+CD56− NK cells, 13. monocytes and 14. dendritic cells/dendritic cell precursors (DCs). For each ATG fraction, levels in patients with versus without aGVHD or cGVHD were compared using Mann-Whitney-Wilcoxon test. For each fraction for which the levels appeared to be significantly different (p<0.05), we determined whether patients with high fraction level had a significantly lower likelihood of aGVHD or cGVHD than patients with low fraction level (high/low cutoff level was determined from ROC curve, using the point with maximum sum of sensitivity and specificity). This was done using log-binomial regression models, ie, multivariate analysis adjusting for recipient age (continuous), stem cell source (marrow or cord blood versus blood stem cells), donor type (HLA-matched sibling versus other), donor/recipient sex (M/M versus other) and days of follow up (continuous). Results: In univariate analyses, patients developing aGVHD had significantly lower levels of the following ATG fractions: binding to naïve CD4 T cells, EM CD4 T cells, naïve CD8 T cells and regulatory NK cells. Patients developing cGVHD had significantly lower levels of the following ATG fractions: capable of binding to naïve CD4 T cells, CM CD4 T cells, EM CD4 T cells, naïve CD8 T cells and regulatory NK cells. Patients who did vs did not develop relapse had similar levels of all ATG fractions. In multivariate analyses, high levels of the following ATG fractions were significantly associated with a low likelihood of aGVHD: capable of binding to naïve CD4 T cells (relative risk=.33, p=.001), EM CD4 T cells (RR=.30, p<.001), naïve CD8 T cells (RR=.33, p=.002) and regulatory NK cells (RR=.36, p=.001). High levels of the following ATG fractions were significantly associated with a low likelihood of cGVHD: capable of binding to naïve CD4 T cells (RR=.59, p=.028), CM CD4 T cells (RR=.49, p=.009), EM CD4 T cells (RR=.51, p=.006), naïve CD8 T cells (RR=.46, p=.005) and regulatory NK cells (RR=.55, p=.036). Conclusion: For both aGVHD and cGVHD, the anti-GVHD effect with relapse-neutral effect of ATG appears to be mediated by antibodies to antigens expressed on naïve T cells (both CD4 and CD8), EM CD4 T cells and regulatory NK cells, and to a lesser degree or not at all by antibodies binding to antigens expressed on B cells, cytolytic NK cells, monocytes or DCs. This is the first step towards identifying the antibody(ies) within ATG important for the anti-GVHD effect without impacting relapse. If such antibody(ies) is (are) found in the future, it should be explored whether such antibody(ies) alone or ATG enriched for such antibody(ies) could further decrease GVHD without impacting relapse. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Author(s):  
Li Guo ◽  
Sikui Shen ◽  
Jesse W Rowley ◽  
Neal D. Tolley ◽  
Wenwen Jia ◽  
...  

Circulating platelets interact with leukocytes to modulate host immune and thrombotic responses. In sepsis, platelet-leukocyte interactions are increased, and have been associated with adverse clinical events, including increased platelet-T cell interactions. Sepsis is associated with reduced CD8+ T cell numbers and functional responses, but whether platelets regulate CD8+ T cell responses during sepsis remains unknown. In our current study, we systemically evaluated platelet antigen internalization and presentation through major histocompatibility complex class I (MHC-I) and their effects on antigen specific CD8+ T cells in sepsis in vivo and ex vivo. We discovered that both human and murine platelets internalize and proteolyze exogenous antigens, generating peptides that are loaded onto MHC-I. The expression of platelet MHC-I, but not platelet MHC-II, is significantly increased in human and murine platelets during sepsis and in human megakaryocytes stimulated with agonists generated systemically during sepsis (e.g., IFN-g and LPS). Upregulation of platelet MHC-I during sepsis increases antigen cross-presentation and interactions with CD8+ T cells in an antigen-specific manner. Using a platelet lineage specific MHC-I deficient mouse strain (B2mf/f--Pf4Cre), we demonstrate that platelet MHC-I regulates antigen-specific CD8+ T cell proliferation in vitro, as well as the number and functional responses of CD8+ T cells in vivo during sepsis. Loss of platelet MHC-I reduced sepsis-associated mortality in mice in an antigen specific setting. These data identify a new mechanism by which platelets, through MHC-I, process and cross-present antigens, engage antigen specific CD8+ T cells, and regulate CD8+ T cell number, functional responses, and outcomes during sepsis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3153-3153
Author(s):  
Yukihiro Miyazaki ◽  
Hiroshi Fujiwara ◽  
Toshiki Ochi ◽  
Sachiko Okamoto ◽  
Hiroaki Asai ◽  
...  

Abstract Abstract 3153 Purpose: In antitumor adoptive immunotherapy, the utility of tumoricidal CD8+ T cells are mainly highlighted, while in tumor immunity, the importance of tumor-reactive CD4+ T cells is also well documented. However, because the number of well-characterized tumor-associated epitopes recognized by CD4+ T cells still remains small, application of tumor-reactive CD4+ T cells is limited. In order to circumvent this drawback, redirection of CD4+ T cells to well-characterized HLA class I-restricted CD8+ T-cell epitope seems promising. In this study, using an HLA class I-restricted and WT1-specific T-cell receptor (TCR) gene transfer, we, in detail, examined helper functions mediated by those gene-modified CD4+T cells in redirected T cell-based antileukemia adoptive immunotherapy. Methods: HLA-A*2402-restricted and WT1235–243-specific TCR α/β genes were inserted into our unique retroviral vector encoding shRNAs for endogenous TCRs (WT1-siTCR vector), and was employed for gene-modification both of CD4+ and CD8+ T cells to express WT1-specific TCR. (1) WT1 epitope-responsive cytokine production mediated by WT1-siTCR-transduced CD4+ T cells (WT1-siTCR/CD4) was measured using bead-based immunoassay and ELISA assay. (2) WT1 epitope-ligation induced co-stimulatory molecules by WT1-siTCR/CD4 was assessed using flow cytometry. (3) Impacts on WT1 epitope and leukemia-specific responses; cytocidal activity, proliferation and differentiation into memory T-cell phenotype, mediated by WT1-siTCR-transduced CD8+ T cells (WT1-siTCR/CD8) provided by concurrent WT1-siTCR/CD4 were assessed using 51Cr-release assay, CD107a/intracellular IFN-γ assay, CFSE dilution assay and flow cytometry. (4) WT1 epitope-ligation triggered chemokine production mediated by WT1-siTCR/CD4 was assessed using real-time PCR, then chemotaxis mediated by WT1-siTCR/CD8 in response to those chemokines was assessed using a transwell experiment. (5) In vivo tumor trafficking mediated by WT1-siTCR/CD4 was assessed using bioluminescence imaging assay. (6) Finally, WT1-siTCR/CD4-caused in vivo augmentation of antileukemia functionality mediated by WT1-siTCR/CD8 was assessed similarly using a xenografted mouse model. Results: WT1-siTCR/CD4 showed a terminal effector phenotype; positive for transcription factor T-bet, but negative for Bcl-6 or Foxp3. Upon recognition of WT1 epitope, WT1-siTCR/CD4 produced Th1, but not Th2 cytokines in the context of HLA-A*2402, which simultaneously required HLA class II molecules on target cells. WT1 epitope-ligation enhanced WT1-siTCR/CD4 to express cell-surface OX40. In the presence of WT1-siTCR/CD4, but not non-gene-modified CD4, effector functions mediated by WT1-siTCR/CD8 in response to WT1 epitope and leukemia cells, including cytocidal activity based on CD107a expression and IFN-γ production was enhanced. Such augmentation was mediated by humoral factors produced by WT1 epitope-ligated WT1-siTCR/CD4. Additionally, proliferation and differentiation into memory phenotype, notably CD45RA- CD62L+ central memory phenotype, mediated by WT1-siTCR/CD8 in response to both WT1 epitope and leukemia cells were also augmented, accompanied with increased expression of intracellular Bcl-2 and cell-surface IL-7R. Next, CCL3/4 produced by activated WT1-siTCR/CD4 triggered chemotaxis of WT1-siTCR/CD8 which express the corresponding receptor, CCR5. Using bioluminescence imaging, intravenously infused WT1-siTCR/CD4 successfully migrated towards leukemia cells inoculated in a NOG mouse. Finally, co-infused WT1-siTCR/CD4 successfully augmented immediate accumulation towards leukemia cells and antileukemia reactivity mediated by WT1-siTCR/CD8 in a xenografted mouse model. Conclusion: Using GMP grade WT1-siTCR vector, redirected CD4+ T cells to HLA class I-restricted WT1 epitope successfully recognized leukemia cells and augmented in vivo antileukemia functionality mediated by similarly redirected CD8+ T cells, encompassing tumor trafficking, cytocidal activity, proliferation and differentiation into memory cells. The latter seem to support the longevity of transferred antileukemia efficacy. Taking together, coinfusion of redirected CD4+ T cells to HLA class I-restricted WT1 epitope seems feasible and advantageous for the successful WT1-targeting redirected T cell-based immunotherapy against human leukemia. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document