Anti-GvHD Effect of Antithymocyte Globulin Is Mediated by Antibodies Binding to T Cells and Regulatory NK Cells, and Less So or Not at All by Antibodies Binding to Other Mononuclear Cell Subsets

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2346-2346
Author(s):  
Mette Hoegh-Petersen ◽  
Minaa Amin ◽  
Yiping Liu ◽  
Alejandra Ugarte-Torres ◽  
Tyler S Williamson ◽  
...  

Abstract Abstract 2346 Introduction: Polyclonal rabbit-anti-human T cell globulin may decrease the likelihood of graft-vs-host disease (GVHD) without increasing the likelihood of relapse. We have recently shown that high levels of antithymocyte globulin (ATG) capable of binding to total lymphocytes are associated with a low likelihood of acute GVHD grade 2–4 (aGVHD) as well as chronic GVHD needing systemic therapy (cGVHD) but not increased likelihood of relapse (Podgorny PJ et al, BBMT 16:915, 2010). ATG is polyclonal, composed of antibodies for antigens expressed on multiple cell subsets, including T cells, B cells, NK cells, monocytes and dendritic cells. These cell subsets may play a role in the pathogenesis of GVHD. The anti-GVHD effect of ATG may be mediated through killing/inhibition of one or several of these cell subsets (eg, T cells) or their subsets (eg, naïve T cells as based on mouse experiments naïve T cells are thought to play a major role in the pathogenesis of GVHD). To better understand the mechanism of action of ATG on GVHD, we set out to determine levels of which ATG fraction (capable of binding to which cell subset) are associated with subsequent development of GVHD. Patients and Methods: A total of 121 patients were studied, whose myeloablative conditioning included 4.5 mg/kg ATG (Thymoglobulin). Serum was collected on day 7. Using flow cytometry, levels of the following ATG fractions were determined: capable of binding to 1. naïve B cells, 2. memory B cells, 3. naïve CD4 T cells, 4. central memory (CM) CD4 T cells, 5. effector memory (EM) CD4 T cells, 6. naïve CD8 T cells, 7. CM CD8 T cells, 8. EM CD8 T cells not expressing CD45RA (EMRA-), 9. EM CD8 T cells expressing CD45RA (EMRA+), 10. cytolytic (CD16+CD56+) NK cells, 11. regulatory (CD16-CD56high) NK cells, 12. CD16+CD56− NK cells, 13. monocytes and 14. dendritic cells/dendritic cell precursors (DCs). For each ATG fraction, levels in patients with versus without aGVHD or cGVHD were compared using Mann-Whitney-Wilcoxon test. For each fraction for which the levels appeared to be significantly different (p<0.05), we determined whether patients with high fraction level had a significantly lower likelihood of aGVHD or cGVHD than patients with low fraction level (high/low cutoff level was determined from ROC curve, using the point with maximum sum of sensitivity and specificity). This was done using log-binomial regression models, ie, multivariate analysis adjusting for recipient age (continuous), stem cell source (marrow or cord blood versus blood stem cells), donor type (HLA-matched sibling versus other), donor/recipient sex (M/M versus other) and days of follow up (continuous). Results: In univariate analyses, patients developing aGVHD had significantly lower levels of the following ATG fractions: binding to naïve CD4 T cells, EM CD4 T cells, naïve CD8 T cells and regulatory NK cells. Patients developing cGVHD had significantly lower levels of the following ATG fractions: capable of binding to naïve CD4 T cells, CM CD4 T cells, EM CD4 T cells, naïve CD8 T cells and regulatory NK cells. Patients who did vs did not develop relapse had similar levels of all ATG fractions. In multivariate analyses, high levels of the following ATG fractions were significantly associated with a low likelihood of aGVHD: capable of binding to naïve CD4 T cells (relative risk=.33, p=.001), EM CD4 T cells (RR=.30, p<.001), naïve CD8 T cells (RR=.33, p=.002) and regulatory NK cells (RR=.36, p=.001). High levels of the following ATG fractions were significantly associated with a low likelihood of cGVHD: capable of binding to naïve CD4 T cells (RR=.59, p=.028), CM CD4 T cells (RR=.49, p=.009), EM CD4 T cells (RR=.51, p=.006), naïve CD8 T cells (RR=.46, p=.005) and regulatory NK cells (RR=.55, p=.036). Conclusion: For both aGVHD and cGVHD, the anti-GVHD effect with relapse-neutral effect of ATG appears to be mediated by antibodies to antigens expressed on naïve T cells (both CD4 and CD8), EM CD4 T cells and regulatory NK cells, and to a lesser degree or not at all by antibodies binding to antigens expressed on B cells, cytolytic NK cells, monocytes or DCs. This is the first step towards identifying the antibody(ies) within ATG important for the anti-GVHD effect without impacting relapse. If such antibody(ies) is (are) found in the future, it should be explored whether such antibody(ies) alone or ATG enriched for such antibody(ies) could further decrease GVHD without impacting relapse. Disclosures: No relevant conflicts of interest to declare.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4154-4154
Author(s):  
Mary M Sartor ◽  
David J Gottlieb

Abstract Although the predominant finding in patients with chronic lymphocytic leukemia (CLL) is an expansion of monoclonal B lymphocytes, a polyclonal expansion of T cells co-exists in CLL patients. Allogenic stem cell transplants for CLL suggest that a significant graft versus leukaemia effect mediated through recognition of minor MHC or leukaemia specific antigens can be achieved. Since it appears that the immune system and probably T cells recognise CLL cells, it is possible that one or more T cell defects might contribute to the initiation or maintenance of a clone of CLL lymphocytes. PD-1 is a coinhibitory molecule that is expressed on T cells in patients with chronic viral infections. It has been suggested that PD-1 expression might be a marker of cell exhaustion due to antigenic overstimulation. We examined the expression of PD-1 and its naturally occurring ligands PD-L1 and PD-L2 on both B and T cells in patients with CLL and compared this with expression on normal peripheral blood mononuclear cells. We found that PD-1 was expressed on over 10% of CD4+ T cells in 7 of 9 cases of CLL (mean 22±16%) but not on CD4+ T cells in any of 9 normal donors (mean 0±0%), p=0.0009. There was no difference in PD-1 expression on CD8+ or CD14+ PBMCs from CLL patients and normal donors (for CD8+ 24±21% and 19±16% for CLL and normals; for CD14+ 58±16% and 71±31% for CLL and normals). More than 10% of CD5+/19+ CLL cells expressed PD-1 in 7 of 10 cases (mean 18±18%) while more than 10% of normal B cells from 6 of 7 donors also expressed PD-1 (mean 49±30%). We examined the expression of PD-1 on naïve, central memory, effector memory and terminally differentiated subsets of CD4+ cells (CD62L+CD45RA+, CD62L+CD45RA−, CD62L−CD45RA− and CD62L−CD45RA+ respectively) from CLL patients and normal donors. The expression of PD-1 was higher on CD4+ cells from CLL patients in all subsets. The effect was most prominent in the effector memory subset (mean 54±4% for CLL patients versus 26±17% for normal donors, p=0.02). We looked for expression of PD-L1 and PD-L2 on T cells, B cells, monocytes and NK cells from CLL patients and normal donors. PD-L1 was only expressed on monocytes (mean 30±23%) and NK cells (mean 14±19%) from CLL patients and on monocytes from normal donors (mean 35±26%). There was no expression of PD-L2 on any cell type in either CLL patients or normal donors. We conclude that there is increased expression of the co-inhibitory molecule PD-1 on CD4+ T cells in patients with CLL. Ligation of PD-1 by PD-L1 expressed on monocytes or NK cells could inhibit immune responses to tumor and infectious antigens leading to persistence of clonally expanded cells and predisposition to opportunistic pathogens.


2020 ◽  
Author(s):  
Hasi Chaolu ◽  
Xinri Zhang ◽  
Xin Li ◽  
Xin Li ◽  
Dongyan Li

To investigate the immune status of people who previously had COVID-19 infections, we recruited patients 2 weeks post-recovery and analyzed circulating cytokines and lymphocyte subsets. We measured levels of total lymphocytes, CD4+ T cells, CD8+ T cells, CD19+ B cells, CD56+ NK cells, and the serum concentrations of interleukin (IL)-1, IL-4, IL-6, IL-8, IL-10, transforming growth factor beta (TGF-β), tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) by flow cytometry. We found that in most post-recovery patients, levels of total lymphocytes (66.67%), CD3+ T cells (54.55%), CD4+ T cells (54.55%), CD8 + T cells (81.82%), CD19+ B cells (69.70%), and CD56+ NK cells(51.52%) remained lower than normal, whereas most patients showed normal levels of IL-2 (100%), IL-4 (80.88%), IL-6 (79.41%), IL-10 (98.53%), TNF-α (89.71%), IFN-γ (100%) and IL-17 (97.06%). Compared to healthy controls, 2-week post-recovery patients had significantly lower absolute numbers of total lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD56+ NK cells, along with significantly higher levels of IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ and IL-17. Among post-recovery patients, T cells, particularly CD4+ T cells, were positively correlated with CD19+ B cell counts. Additionally, CD8+ T cells positively correlated with CD4+ T cells and IL-2 levels, and IL-6 positively correlated with TNF-α and IFN-γ. These correlations were not observed in healthy controls. By ROC curve analysis, post-recovery decreases in lymphocyte subsets and increases in cytokines were identified as independent predictors of rehabilitation efficacy. These findings indicate that the immune system has gradually recovered following COVID-19 infection; however, the sustained hyper-inflammatory response for more than 14 days suggests a need to continue medical observation following discharge from the hospital. Longitudinal studies of a larger cohort of recovered patients are needed to fully understand the consequences of the infection.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e21203-e21203
Author(s):  
Liangliang Xu ◽  
Jitian Zhang ◽  
Li Yang ◽  
Guangqiang Shao ◽  
Taiyang Liuru ◽  
...  

e21203 Background: Radiotherapy (RT), surgical resection (SR), and immunotherapy (IT) as main therapies in lung cancer have either suppressive or stimulatory effects on the immune system. It’s still unclear the mechanism involved in the systemic changes of immune cells in the blood. Peripheral blood lymphocyte subpopulations were useful markers for evaluating immune response in tumor patients. Hence, we aimed to systematically investigate the alteration of lymphocyte subpopulations during the local therapies to evaluate antitumor treatment effects. Methods: Blood samples were obtained EDTA coated tubes and then centrifuged gently for white blood cell separation. The white blood cells in 10% DMSO and 90% FBS were frozen slowly in -80°C refrigerator. The following fluorochrome-conjugated surface and nuclear antibodies were used in the lymphocyte subtyping: CD11b, CD45, CD19, CD3, CD56, CD4, CD8a, CD25,CD127 and FOXP3. The staining cells were detected in the BD FACS machine and data were analyzed by the paired T-test. The percentage of Lymphocytes, Myeloid cells, B cells, T cells, Treg, CD8+ T cells, CD4+ T cells, NK cells, and NKT were examined. Results: Between July 2019 and January 2020, a total of 176 patients eligible, including 135 RT patients and 29 SR patients,12 IT patients, with both blood collection with both Pre, During and End therapies. Before local therapies, the percentage of total T cells in the RT group was significantly higher than SR (RT v.s SR mean:64.1 v.s 55.3, P = 0.02) while CD8+ T cells (RT v.s SR mean:28.2 v.s 34.5, P = 0.04)and Tregs (RT v.s SR mean:0.0 v.s 0.1, P = 0.055) were lower. The baseline level of T cells and their subtypes showed a significant difference in these two group patients. After local therapies, myeloid cells, lymphocytes, CD4+ T cells, CD8+ T cells, NK cells were significant different. There is no significant difference due to the smaller number of IT patients. In the RT group, lymphocytes (Pre-RT v.s End-RT mean:75.2 v.s 54.3, P = 0.004) and B cells (Pre-RT v.s End-RT mean:12.6 v.s 8.0, P = 0.03) were significantly decreased while other subpopulations didn’t show any significant difference after RT. Interestingly, in the SR group, there was a significant increase in CD4+ T cells (mean:59.0 v.s 62.1, p = 0.02) a trend of reduction in CD8+ T cells (mean:34.5 v.s 32.0, p = 0.055) after SR. In addition, there was an increased trend of Tregs after IT. Conclusions: There are some different patterns of distribution in subtypes of leukocytes in operable and inoperable patients and between different therapies. All RT, SR and IT changed the distribution of peripheral blood lymphocyte subpopulations. Further validation study is warranted to validate our findings particularly in circulating lymphocytes and B cells as a marker to evaluate immune status after RT, CD4+ T cells and CD8+ T cells after SR, Tregs after IT, as well as their relationship with tumor microenvironment and implication for personalized care.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1931-1931
Author(s):  
Patrice Chevallier ◽  
Nelly Robillard ◽  
Marina Illiaquer ◽  
Julie Esbelin ◽  
Mohamad Mohty ◽  
...  

Abstract Abstract 1931 Introduction: Cord Blood (CB) are increasingly used as an alternative stem cells source in adults for allogeneic Stem Cell Transplantation (allo-SCT). The risk of human herpes virus (HHV-6) reactivation is significantly higher after CB transplant vs unrelated peripheral blood stem cells (PBSC) allo-SCT (Chevallier et al, BMT 2010). Higher HHV-6 cell receptor CD46 expression on progenitor cells in CB may explain this difference (Thulke et al, Virol J 2006). Patients and Methods: We have prospectively compared the HHV-6 cell receptor CD46 expression on various cell subsets of three freshly harvested blood sources on one hand and of three graft sources on the other hand. 52 samples were used for the purpose of this study. They were issued from peripheral blood (PB, n=10), G-CSF mobilised PB (GCSF-PB, n=10), cord blood (CB, n=10), unmanipulated bone marrow (uBM, n=5), leukapheresis product (LP, n=10) and thawed CB graft (n=7). CD46 expression was assessed by FACS analysis using a FACS CANTO II (BD Biosciences, San Jose, CA, USA) on total lymphocytes, monocytes, NK cells, T and B cells subsets, plasmacytoid (pDCs) dendritic cells and stem cells. Results: As all cell subsets were found CD46 positive, CD46 mean fluorescence intensity (MFI) was then considered for comparison. When considering the three blood sources, CD46 MFI were found similar on T cells, CD4-/CD8+ and CD4-/CD8- T cells, NKT cells, Tregs, memory B lymphocytes, pDCs and CD34+ stem cells. CD46 MFI was significantly lower on CD4+/CD8- and CD4+/CD8+ T cells, transitional B cells, total and naïve B lymphocytes, and NK cells in CB while higher on monocytes. The highest CD46 MFI was observed on monocytes in CB and on CD4+/CD8+ T cells in GCSF-PB and PB. Also, highest CD46 MFI was detected on T cells compared to B lymphocytes and NK cells in all blood sources while CD46 MFI was higher on CD4+/CD8- T cells compared to CD8+/CD4- T cells. When considering the three graft sources, CD46 MFI was similar on CD4-/CD8- T cells and NKT cells. CD46 MFI was found significantly lower on all other sub-populations in thawed CB graft, except monocytes. The highest CD46 MFI was observed on monocytes in CB graft, on CD4+/CD8+ T cells in LP and on monocytes and on CD4+/CD8- T cells in uBM. Also, highest CD46 MFI was detected on T cells compared to B lymphocytes and NK cells in all graft sources while CD46 MFI was higher on CD4+/CD8- T cells compared to CD8+/CD4- T cells. Conclusion: This original study shows strong differences in term of quantitative CD46 expression between several blood and grafts samples. Our results suggest that other factors (such as another HHV-6 cell surface receptor) than the qualitative CD46 expression play a role in the higher HHV-6 reactivation observed after CB transplant in adults. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1118-1118 ◽  
Author(s):  
Elisabeth A Lasater ◽  
An D Do ◽  
Luciana Burton ◽  
Yijin Li ◽  
Erin Williams ◽  
...  

Abstract Introduction: Intrinsic apoptosis is regulated by the BCL-2 family of proteins, which consists of both anti-apoptotic (BCL-2, BCL-XL, MCL-1) and pro-apoptotic (BIM, BAX, BAK, BAD) proteins. Interaction between these proteins, as well as stringent regulation of their expression, mediates cell survival and can rapidly induce cell death. A shift in balance and overexpression of anti-apoptotic proteins is a hallmark of cancer. Venetoclax (ABT-199/GDC-0199) is a potent, selective small molecule BCL-2 inhibitor that has shown preclinical and clinical activity across hematologic malignancies and is approved for the treatment of chronic lymphocytic leukemia with 17p deletion as monotherapy and in combination with rituximab. Objective: To investigate the effects of BCL-2 inhibition by venetoclax on viability and function of immune-cell subsets to inform combinability with cancer immunotherapies, such as anti-PD-L1. Methods and Results: B cells, natural killer (NK) cells, CD4+ T cells, and CD8+ T cells in peripheral blood mononuclear cells (PBMCs) from healthy donors (n=3) were exposed to increasing concentrations of venetoclax that are clinically achievable in patients, and percentage of live cells was assessed by flow-cytometry using Near-IR cell staining. B cells were more sensitive to venetoclax (IC50 of ~1nM) than CD8+ T cells (IC50 ~100nM), NK cells (IC50 ~200nM), and CD4+ T cells (IC50 ~500nM) (Figure A). CD8+ T-cell subset analysis showed that unstimulated naive, but not memory cells, were sensitive to venetoclax treatment (IC50 ~30nM and 240nM, respectively). Resistance to venetoclax frequently involves compensation by other BCL-2 family proteins (BCL-XL and MCL-1). As assessed by western blot in PBMCs isolated from healthy donors (n=6), BCL-XL expression was higher in NK cells (~8-fold) and CD4+ and CD8+ T cells (~2.5-fold) than in B cells (1X). MCL-1 protein expression was higher only in CD4+ T cells (1.8-fold) relative to B cells. To evaluate the effect of venetoclax on T-cell function, CD8+ T cells were stimulated ex vivo with CD3/CD28 beads, and cytokine production and proliferation were assessed. Venetoclax treatment with 400nM drug had minimal impact on cytokine production, including interferon gamma (IFNg), tumor necrosis factor alpha (TNFa), and IL-2, in CD8+ effector, effector memory, central memory, and naïve subsets (Figure B). CD8+ T-cell proliferation was similarly resistant to venetoclax, as subsets demonstrated an IC50 >1000nM for venetoclax. Taken together, these data suggest that survival of resting NK and T cells in not impaired by venetoclax, possibly due to increased levels of BCL-XL and MCL-1, and that T-cell activation is largely independent of BCL-2 inhibition. To evaluate dual BCL-2 inhibition and PD-L1 blockade, the syngeneic A20 murine lymphoma model that is responsive to anti-PD-L1 treatment was used. Immune-competent mice bearing A20 subcutaneous tumors were treated with clinically relevant doses of venetoclax, murine specific anti-PD-L1, or both agents. Single-agent anti-PD-L1 therapy resulted in robust tumor regression, while single-agent venetoclax had no effect. The combination of venetoclax and anti-PD-L1 resulted in efficacy comparable with single-agent anti-PD-L1 (Figure C), suggesting that BCL-2 inhibition does not impact immune-cell responses to checkpoint inhibition in vivo. These data support that venetoclax does not antagonize immune-cell function and can be combined with immunotherapy targets. Conclusions: Our data demonstrate that significant venetoclax-induced cell death at clinically relevant drug concentrations is limited to the B-cell subset and that BCL-2 inhibition is not detrimental to survival or activation of NK- or T-cell subsets. Importantly, preclinical mouse models confirm the combinability of BCL-2 and PD-L1 inhibitors. These data support the combined use of venetoclax and cancer immunotherapy agents in the treatment of patients with hematologic and solid tumor malignancies. Figure Figure. Disclosures Lasater: Genentech Inc: Employment. Do:Genentech Inc: Employment. Burton:Genentech Inc: Employment. Li:Genentech Inc: Employment. Oeh:Genentech Inc: Employment. Molinero:Genentech Inc: Employment, Equity Ownership, Patents & Royalties: Genentech Inc. Penuel:Genentech Inc: Employment. Sampath:Genentech Inc: Employment. Dail:Genentech: Employment, Equity Ownership. Belvin:CytomX Therapeutics: Equity Ownership. Sumiyoshi:Genentech Inc: Employment, Equity Ownership. Punnoose:Roche: Equity Ownership; Genentech Inc: Employment. Venstrom:Genentech Inc: Employment. Raval:Genentech Inc: Consultancy, Employment, Equity Ownership.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4192-4192 ◽  
Author(s):  
Sumithira Vasu ◽  
Samantha M. Jaglowski ◽  
Susan Geyer ◽  
Anissa Bingman ◽  
Patrick Elder ◽  
...  

Abstract Abstract 4192 Donor T cells are known to be the most powerful effectors for GVHD. Recently, the dose of invariant NKT and B cells in the allograft have been associated with incidence of aGVHD in sibling transplants (Chaidos et al, Blood 2012; Michonneau et al, Brit.J.Hem 2009). Murine models suggest a role for donor B cells and CD4+ T cells in development of cGVHD (Young et al, J.Immunol 2012). The influence of NK cells, NKT cells, B cells in allografts from matched unrelated donor (MUD) transplants on incidence of cGVHD is unknown. Here we present results on influence of innate and adaptive immune subsets in the allograft and the incidence of aGVHD and cGVHD in 108 patients (pts). We analyzed the absolute numbers of T, NK, NKT and B cells along with extensive immunophenotypic characterization of their activation status in consecutive allografts obtained from both sibling and MUD between 2010– 2011. All allografts were peripheral blood stem cells mobilized after 5 days of G-CSF administration. Of the 108 pts, 67 pts received grafts from MUD; 71 pts had received a reduced-intensity conditioning regimen. All pts receiving allografts from MUD received anti-thymocyte globulin. Median age of pts at transplant was 55 years (21–73 years). Median CD34+ dose was 6.51 x106/kg and median CD3+ dose was 2.33 x108/kg. The incidence of aGVHD and cGVHD was 58% and 38% respectively. We compared in an unsupervised approach whether absolute numbers of resting and activated NK, NKT, B, CD4+ and CD8+ T cells were different in pts with vs. without aGVHD/cGVHD. Univariate logistic regression models and Wilcoxon rank sum tests were used to assess differential expression of absolute and percent immune subset markers between those who did vs. did not develop GVHD, analyzing separately for aGVHD and cGVHD. In addition, some markers had a number of absolute values of zero, where the parameter of interest was whether or not a donor had a non-zero value and its association with GVHD in pts. Results: Median numbers of activated NK cells (CD3−CD56+CD16+CD69+) cells were significantly higher in pts with vs. without aGVHD (586.4/μL vs. 270.5/μl, p=0.003). Higher median numbers of resting NK cells (CD3−CD56+CD16+) and activated B cells (CD19+CD80+) were associated with cGVHD but not aGVHD. Non-zero levels of CD4+ T cells expressing prostaglandin D2 (PGD2) receptor (CD4+CD294+), chemokine receptor CCR3 (CD4+CD193+), chemokine receptor 4 CCR4 (CD4+CD194+) and CXCR3 (CD4+CD183+) in the allograft were associated with lower incidence of cGVHD. Also CD4+ T cells expressing both CCR4 and PGD2 receptors were associated with lower incidence of cGVHD. Significant differences were seen in median numbers (Table 1) and % of non-zero values (Table 2) of NK cells, B cells, and activated CD4+ T cells between those who did vs. did not develop cGVHD. Immunophenotypic analyses of pts receiving these allografts at days 30 and 100 post transplant were also performed. Updated results about correlation of these subsets between allografts and post-transplant patient samples will be presented. Multivariate analyses of these subsets in conjunction with clinical factors are being performed. In conclusion, activated B cells in the allograft may influence the incidence of cGVHD; in particular B cells expressing CD80, a co-stimulatory molecule for T cells and their association with cGVHD confirms results from murine models. Interestingly, CD4+ T cells associated with lower incidence of cGVHD expressed receptors for chemokines, CXCR3 and prostaglandin D2. These homing receptors are up regulated selectively in CD4+ T cells in the absence of chronic GVHD, suggesting a protective role for these receptors in the pathogenesis of cGVHD. Activated and resting NK cells were also associated with acute and chronic GVHD respectively. These results showing an association of specific immune subsets in the allograft and GVHD may provide opportunities for therapeutic interventions for graft engineering. Disclosures: Off Label Use: Lenalidomide in AML. Jaglowski:Pharmacyclics: Research Funding. Benson:Innate Pharma: Research Funding. Devine:Sanofi: Honoraria, Research Funding.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Hasichaolu ◽  
Xinri Zhang ◽  
Xin Li ◽  
Xin Li ◽  
Dongyan Li

To investigate the immune status of people who previously had COVID-19 infections, we recruited two-week postrecovery patients and analyzed circulating cytokine and lymphocyte subsets. We measured levels of total lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD56+ NK cells and the serum concentrations of interleukin- (IL-) 1, IL-4, IL-6, IL-8, IL-10, transforming growth factor beta (TGF-β), tumor necrosis factor alpha (TNF-α), and interferon gamma (IFN-γ) by flow cytometry. We found that in most postrecovery patients, levels of total lymphocytes (66.67%), CD3+ T cells (54.55%), CD4+ T cells (54.55%), CD8+ T cells (81.82%), CD19+ B cells (69.70%), and CD56+ NK cells (51.52%) remained lower than normal, whereas most patients showed normal levels of IL-2 (100%), IL-4 (80.88%), IL-6 (79.41%), IL-10 (98.53%), TNF-α (89.71%), IFN-γ (100%), and IL-17 (97.06%). Compared to healthy controls, two-week postrecovery patients had significantly lower absolute numbers of total lymphocytes, CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD56+ NK cells, along with significantly higher levels of IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ, and IL-17. Among postrecovery patients, T cells, particularly CD4+ T cells, were positively correlated with CD19+ B cell counts. Additionally, CD8+ T cells were positively correlated with CD4+ T cells and IL-2 levels, and IL-6 positively correlated with TNF-α and IFN-γ. These correlations were not observed in healthy controls. By ROC curve analysis, postrecovery decreases in lymphocyte subsets and increases in cytokines were identified as independent predictors of rehabilitation efficacy. These findings indicate that the immune system gradually recovers following COVID-19 infection; however, the sustained hyperinflammatory response for more than 14 days suggests a need to continue medical observation following discharge from the hospital. Longitudinal studies of a larger cohort of recovered patients are needed to fully understand the consequences of the infection.


2020 ◽  
Author(s):  
Mingcan Yang ◽  
Qing Lv ◽  
Qiujing Wei ◽  
Yutong Jiang ◽  
Jun Qi ◽  
...  

Abstract Background Studies into ankylosing spondylitis (AS) and its relationship with immune function are controversial, and the correlation between the efficacy of TNF-α inhibitor and changes in immune function is unclear. Methods A total of 40 immune cells were tested with flow cytometry, and the results of 105 HC (healthy control) subjects, 177 active-stage AS patients, and 23 AS cases before and after 12 weeks of Anbainuo therapy were analyzed. Results Compared with the HC group, the proportion of immune cells, such as naïve and central memory CD4+T cells, in AS increased (p<0.0001), but effector memory and terminally differentiated CD4+T cells were decreased (p<0.01 and 0.0001, respectively). Naïve, central memory, and effector memory CD8+T cells were increased (p<0.0001, 0.001, and 0.01, respectively), but terminally differentiated CD8+T cells were decreased (p<0.0001). Th1 cells (helper T cells-1), Tfh1 cells (follicular helper T cells-1), Tc1 cells (cytotoxic T cells-1), and Tregs (regulatory T cells) were lower (p<0.01, 0.05, 0.0001, and 0.001, respectively), but Th17 cells, Tfh17 cells, and Tc cells were higher (p<0.001, 0.0001 and 0.001, respectively). The proportions of total B cells and class-switched B cells were increased (p<0.05), but non-switched B cells, plasma cells, memory B cells, and immature Bregs (regulatory B cells) were lower (p<0.01, 0.0001, 0.0001, and 0.0001, respectively). After Anbainuo therapy, the percentage of Tregs and B10 cells (IL-10-producing regulatory B cells) had increased (p<0.01and 0.05, respectively), and the increase in Tregs was positively correlated with the decrease in CRP (C-reactive protein) (r= 0.489, p=0.018). Conclusions We found that, in terms of both innate and acquired immunity, active-stage AS patients have an immunity imbalance involving multiple types of immune cells, including CD4+T cells, CD8+T cells, Th cells, Tfh cells, Tc cells, Tregs, Bregs, and B cells. Anbainuo can not only help to inhibit disease activity and partial immune function imbalance in AS but can also increase the number of negative regulatory cells in inflammation.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1327.2-1327
Author(s):  
M. Yang ◽  
Q. Lv ◽  
Q. Wei ◽  
J. Gu

Background:Studies into ankylosing spondylitis (AS) and its relationship with immune function are controversial, and the correlation between the efficacy of TNF-α inhibitor and changes in immune function is unclear.Objectives:We conducted a prospective study of T-cell and B-cell subset distribution and analyzed lymphocyte function in AS patients to further clarify changes to the immune system caused by AS and to explore resistance that could contribute to relapse after treatment.Methods:A total of 40 immune cells were tested with flow cytometry, and the results of 105 HC (healthy control) subjects, 177 active-stage AS patients, and 23 AS cases before and after 12 weeks of Anbainuo therapy were analyzed.Results:Compared with the HC group, the proportion of immune cells, such as naïve and central memory CD4+T cells, in AS increased (p<0.0001), but effector memory and terminally differentiated CD4+T cells were decreased (p<0.01 and 0.0001, respectively). Naïve, central memory, and effector memory CD8+T cells were increased (p<0.0001, 0.001, and 0.01, respectively), but terminally differentiated CD8+T cells were decreased (p<0.0001). Th1 cells (helper T cells-1), Tfh1 cells (follicular helper T cells-1), Tc1 cells (cytotoxic T cells-1), and Tregs (regulatory T cells) were lower (p<0.01, 0.05, 0.0001, and 0.001, respectively), but Th17 cells, Tfh17 cells, and Tc cells were higher (p<0.001, 0.0001 and 0.001, respectively). The proportions of total B cells and class-switched B cells were increased (p<0.05), but non-switched B cells, plasma cells, memory B cells, and immature Bregs (regulatory B cells) were lower (p<0.01, 0.0001, 0.0001, and 0.0001, respectively). After Anbainuo therapy, the percentage of Tregs and B10 cells (IL-10-producing regulatory B cells) had increased (p<0.01and 0.05, respectively), and the increase in Tregs was positively correlated with the decrease in CRP (C-reactive protein) (r= 0.489, p=0.018).Conclusion:We found that, in terms of both innate and acquired immunity, active-stage AS patients have an immunity imbalance involving multiple types of immune cells, including CD4+T cells, CD8+T cells, Th cells, Tfh cells, Tc cells, Tregs, Bregs, and B cells. Anbainuo can not only help to inhibit disease activity and partial immune function imbalance in AS but can also increase the number of negative regulatory cells in inflammation.References:[1]Long, S., et al., High frequency of circulating follicular helper T cells is correlated with B cell subtypes in patients with ankylosing spondylitis. Exp Ther Med, 2018. 15(5): p. 4578-4586.[2]An, H., et al., The absolute counts of peripheral T lymphocyte subsets in patient with ankylosing spondylitis and the effect of low-dose interleukin-2. Medicine (Baltimore), 2019. 98(15): p. e15094.Acknowledgments:Thanks to Professor Zhinan Yin for his support and assistance with this studyDisclosure of Interests:None declared


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3656-3656
Author(s):  
Gullu Gorgun ◽  
Fenglong Liu ◽  
Eleanor Howe ◽  
Patrick Philpot ◽  
Eva Guinan ◽  
...  

Abstract Retention of antigen (Ag) specific immunity to pathogens and tumor cells in the context of adequate control of alloreactivity remains a challenge for allogeneic hematopoietic stem cell transplantation (HSCT). Global or subset depletion of T cells achieves control of alloreactivity at the cost of loss of non-allospecific repertoire. Induction of Ag specific anergy has been explored as a way to selectively impact alloreactivity. Anergy is induced when Ag is presented to CD4 T cells without CD28:B7 mediated costimulation. We and others have shown that CD4 anergy results from a positive signaling cascade, rendering Ag specific T cells unable to proliferate and produce cytokines on Ag specific rechallenge. When this concept was translated to a haploidentical HSCT clinical trial, all donor marrow harvest mononuclear cells were subjected to inhibition of CD28 mediated costimulation by CTLA-4-Ig, a fusion protein binding both B7.1 and B7.2 costimulatory molecules. In our ongoing clinical trial, unfractionated donor peripheral blood mononuclear cells (PBMC) are cultured with allostimulators in the presence of costimulatory blockade (CSB) provided by anti-B7.1 and anti-B7.2 humanized monoclonal antibodies. To understand the impact of inducing alloAg specific CD4 T cell anergy on bystander PBMC, we investigated the effects on CD8 T cells, monocytes, B and NK cells. Mimicking our ex vivo clinical anergization protocol, primary MLR using PBMC from fully HLA mismatched healthy donors (n=12) were performed in the presence or absence of CSB. CSB resulted in 73% mean inhibition of proliferation after 72 hrs of primary MLR. CD4 and CD8 T cells, monocytes, NK and B cells from these MLRs were isolated by negative selection as were control unmanipulated CD4 and CD8 T cells. From each population, RNA was extracted and global gene expression profiling performed using Affymetrix human 133plus2 chips. Unsupervised analysis was performed using DNA-Chip Analyzer and supervised analysis using Significance Analysis for Microarrays. While the frequency of alloreactive CD4 T cells in human PBMC is only 1–10%, we observed global gene expression variance (436 genes) between unstimulated CD4 cells vs. CD4 cells isolated from MLR in the presence or absence of CSB (P≤0.05). Even more surprising was the impact of CSB on bystander CD8, monocytes, NK and B cells. Between cells from MLR with or without CSB, there were 632 differentially expressed genes in CD8 T cells, 105 differentially expressed in NK cells, 85 differentially expressed in monocytes and 1781 in B cells (P≤0.05 for all populations tested). We observed not only expected alterations (e.g, in inflammatory cytokines and receptor mediated signaling) but also observed changes [e.g. in proteasome degradation (i.e. CD4, CD8, NK and B cells) and in expression of genes regulating cell motility (i.e. CD8 T and NK cells)]. These results demonstrate that induction of alloAg specific anergy within a small population of alloreactive CD4 T cells results in dramatic alterations of the genetic repertoire of bystander cells. Thus, blockade of the CD28:B7 costimulatory pathway not only inactivates alloreactive CD4 T cells but also alters the functional program of other immune cells that will repopulate the host post-HSCT.


Sign in / Sign up

Export Citation Format

Share Document