scholarly journals Recognition of a mycobacteria-specific epitope in the 65-kD heat-shock protein by synovial fluid-derived T cell clones.

1990 ◽  
Vol 171 (3) ◽  
pp. 831-841 ◽  
Author(s):  
J S Gaston ◽  
P F Life ◽  
P J Jenner ◽  
M J Colston ◽  
P A Bacon

Adjuvant arthritis in rats is induced by a T cell clone specific for amino acids 180-188 of the mycobacterial 65-kD heat-shock protein, and synovial T cell responses to this same Ag have been noted in human arthritis. We have isolated 65-kD Ag-specific T cell clones from synovial fluid mononuclear cells of a patient with acute arthritis, which, unlike the corresponding PBMC, showed a marked proliferative response to the 65-kD Ag. Using synthetic peptides corresponding to the whole sequence of the 65-kD Ag, all the clones were shown to recognize an epitope present in the first NH2-terminal peptide (amino acids 1-15), with no response to the adjacent peptide (amino acids 6-22) or to any other peptide. The complete dominance of this epitope in the response to the 65-kD Ag was shown by documenting responses to the peptide in PBMC obtained after recovery from the arthritis. This epitope, like that recognized by the rat arthritogenic T cell clone, is in a portion of the 65-kD sequence that is not conserved between bacteria and eukaryotes, so that in this case, joint inflammation could not be attributed to bacteria-induced T cell clones cross-reacting with the self 65-kD Ag.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1249-1249
Author(s):  
Veronika Foltankova ◽  
Eva Matejkova ◽  
Milan Bartos ◽  
Milos Dendis ◽  
Dana Novotna ◽  
...  

Abstract Graft-verus-leukemia (GVL) effect in hematopoietic stem cell transplantation (HSCT) is usually complicated by the alloreactivity of donor T cells which leads to acute graft-versus-host (GVH) disease. GVL and GVH reactions are proved to be mediated by different T cell clones. The objective of this study was to identify and characterize T cells clones with specific antileukemia activity without mediating GVHD. We have performed primary mixed leukocyte reaction (MLR) using patient non-leukemic irradiated peripherial blood mononuclear cells (PBMC) as stimulators and donor PBMC as responders. To prepare GVL specific T cells, activated alloreactive T cells were first selectively depleted with an anti-CD25 immunotoxin (Michalek, et al. PNAS2003, 100: 1180–4). Allodepleted T cells were then stimulated in secondary MLR using irradiated leukemia cells from the same patient. Activated leukemia-reactive cells were purified by immunomagnetic selection or by FACS based on INF-γ or CD25 expression, respectively. Clonotypic assay was used for identification of individual leukemia-specific T cell clones (Michalek, et al. Lancet2003, 361: 1183–5; Michalek, et al. J Immunol2007, 178: 6789– 5). This highly sensitive assay is based on detailed analysis of T cell receptor β VDJ unique sequence (TCRB-VDJ). mRNA was extracted from sortred activated cells and cDNA synthetized by anchored reverse transcription. Target TCRB-VDJ gene sequence was amplified by anchor PCR and used to transform bacteria. Bacterial colonies were picked for plasmid isolation and subsequent direct automated sequencing of the TCRBVDJ sequences. We assume that the frequency of particular TCRB-VDJ sequences among bacterial clones after transformation are proportional to the frequency of those sequences in the original population of T cells activated by GVH or GVL reaction. We investigated the presence of individual antileukemic T cell clones in patients with acute myeloid leukemia (AML) and chronic lymphatic leukemia (CLL), and defined them by the TCRB-VDJ unique sequence. The sequences that occured in more than 10% bacterial colonies are likely to represent the most immunodominant clones. Populations of antileukemic T cell clones were oligoclonal, i.e. we observed limited number of individual immunodominat clones which plays important role in GVL reaction. In first CLL patient who had undergone HSCT, six antileukemic T cell clones were identified, four of them are considered to be immunodominant. In second CLL patient after HSCT, only one highly immunodominat autileukemic T cell clone was observed. This specific clone was further monitored by quantitative real-time PCR in patients peripherial blood.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5774-5774
Author(s):  
John Williamson ◽  
Timothy Looney ◽  
Geoffrey Lowman ◽  
Harwinder Sidhu ◽  
Luis Solano ◽  
...  

Introduction: The ability to detect and quantitate low frequency T-cell clones enables numerous hematology/oncology research applications, including identification and assessment of biomarkers associated minimal residual disease (MRD). Rare clone detection via NGS requires highly efficient library preparation and accurate sequencing methodologies, because single nucleotide substitution sequencing errors mimic the natural variation in the T-cell repertoire, resulting in detection of artifactual low frequency clones. Here we present an experimental framework and corresponding performance of rare clone detection utilizing the OncomineTM TCR Beta short read (TCRb-SR) assay, using Ampliseq-based library preparation targeting the highly variable CDR3 region of TCRb using either DNA or RNA as input, with sample-to-result in 2 days. Methods: To evaluate detection sensitivity of the TCRB-SR assay, we utilized Jurkat cell line DNA and RNA because the presence of a single T cell clone enables precise control of dilution studies. Commercially procured Jurkat gDNA or RNA was spiked into peripheral blood leukocyte gDNA or RNA from 10-1 to 10-6 absolute clone frequency to create specimens with a known T-cell clone at frequencies commonly observed in MRD research applications. Peripheral blood leukocyte gDNA or RNA was used as the background for spike in studies due to its high T-Cell diversity. Six to twenty technical replicates were analyzed per dilution point, with DNA inputs ranging from 100ng to 1ug and RNA inputs ranging from 25ng to 100ng to evaluate the minimum detectable clone frequency as a function of nucleic acid input. Libraries were prepared following the TCRB-SR manufacturer's instructions for both DNA and RNA, followed by templating and sequencing using Ion Chef and S5 systems. Data processing was performed in Torrent Suite software (v5.10) followed by read alignment to the IMGT database of variable, diversity, and joining genes using Ion Reporter software (v5.10). For the 10-6 target frequency with gDNA as the input, four 1ug libraries were combined for analysis in Ion Reporter. Analytical sensitivity was calculated at each target clone frequency by detection of the Jurkat clone as defined by V-gene, Joining gene, and CDR3 nucleotide sequence. Results: Detection sensitivity was dependent on the amount gDNA or RNA input. For gDNA inputs, we observed 100% sensitivity at 10-3 with 100ng input, 100% sensitivity at 10-4 with 250ng input, 95% sensitivity at 10-5 with 1ug input, and 100% sensitivity at 10-6 with 4ug input. For RNA inputs, we observed 100% sensitivity at 10-5 with 25ng input and 100% sensitivity at 10-6 with 100ng input. In addition, we observe a strong linearity of observed clone frequencies at each dilution level, with an r-squared of 0.97. Conclusions: Here we demonstrate the ability to detect T-cell clones down to 10-6 from gDNA or RNA inputs with high sensitivity and linearity utilizing the OncomineTM TCR Beta short read assay. We present data demonstrating detection of clones with absolute frequencies of 10-6 utilizing 4ug gDNA input or 100ng RNA input, highlighting strong performance at nucleic acid input levels typically seen in clinical research samples. Taken together, we show feasibility for rare clone detection in either gDNA or RNA enabling research and development for T-cell minimal residual disease applications. For research use only, not for use in diagnostic procedures. Disclosures Williamson: Thermo Fisher Scientific: Employment. Looney:Thermo Fisher Scientific: Employment. Lowman:Thermo Fisher Scientific: Employment. Sidhu:Thermo Fisher Scientific: Employment. Solano:Thermo Fisher Scientific: Employment. Salazar:Thermo Fisher Scientific: Employment. Tian:Thermo Fisher Scientific: Employment. Ramsamooj:Thermo Fisher Scientific: Consultancy.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 4525-4525
Author(s):  
Yongxia Wu ◽  
Jianing Fu ◽  
Anusara Daenthanasanmak ◽  
Hung D Nguyen ◽  
Mohammed Hanief Sofi ◽  
...  

Abstract The diversity and composition of T cell receptor (TCR) repertoire, which is the result of V, D and J gene recombination in TCR gene locus, has been found to impact immune responses in autoimmune and infectious diseases. The correlation of T-cell repertoire with the pathogenesis and outcome of graft-versus-host disease (GVHD) remain undefined. Here, by utilizing high-throughput sequencing of the gene encoding the TCRβ-chain, we comprehensively analyzed the profile of T-cell repertoire in host lymphoid and GVHD target organs after bone marrow transplantation (BMT). To understand whether T-cell repertoire is affected by different strength of alloantigen stimulation, we transferred same donor T cells derived from C57BL/6 (B6) mice into irradiated BALB/c (MHC-fully mismatched), B6D2F1 (MHC-haploidentical), BALB.b (MHC-matched ) and B6 recipients (syngeneic). Fourteen days later, T cells were isolated from recipient peripheral blood, spleen, peripheral lymphoid nodes (pLN), mesenteric lymphoid nodes (mLN), liver, lung, gut and skin for TCR sequencing. Clonality of donor T cells, which is inversely associated with TCR diversity, was significantly increased in either syngeneic or allogeneic recipients when compared with naïve donor T-cells, consistent with the concept that TCR diversity is reduced after T-cell activation and expansion. Increased TCR clonality was observed in lymphoid organs of allogeneic compared with syngeneic recipients, confirming that donor T cells were further activated in allogeneic recipients. However, decreased TCR clonality was observed in GVHD target organs of allogeneic compared with syngeneic recipients, suggesting that only limited donor T-cell clones were able to migrate in target organs in syngeneic compared to allogeneic recipients. The frequency of top clones in total productive rearrangements was increased in GVHD target organs especially liver of allogenic than syngeneic receipts. Interestingly, the frequency of top clones was positively associated with MHC disparity between donor and host, ranging from low to high in syngeneic, MHC-matched, haploidentical, and fully-mismatched recipients, respectively. To understand the extent to which TCR rearrangement is shared among different organs after BMT, we analyzed the overlap of TCR clones across different organs in the same recipients. T-cell clones were highly overlapping across organs, especially among GVHD target organs, in the same recipients after allogeneic BMT, although much lower overlapping in recipients after syngeneic BMT. The results suggest that alloantigen stimulation selectively activate certain T-cell clones and enrich antigen specific clones. On the other hand, much fewer shared clones were found among different recipients within the same group, regardless of MHC-disparity between donor and host. These results suggest that specific T-cell clones activated and expanded by alloantigens stimulation were highly different in individual recipients even with the same MHC-disparity between donor and host. Interestingly, the levels of clone overlapping were different in distinct organs among individual recipients. The level of T-cell clone overlapping was found high in liver of individual recipients regardless of the strength of alloantigen stimulation. The level of T cell clone overlapping was relatively high in pLNs and skin of the recipients after haploidentical BMT; whereas the level of T cell clone overlapping was relatively high in mLNs and gut of the recipients after MHC-matched BMT. These results suggest that skin may be a dominant target in haploidentical BMT and gut as a dominant target in MHC-matched BMT; whereas liver is a common target organ regardless. In conclusion, the current study establishes the association between MHC disparity, T-cell activation, and GVHD development in the level of donor T-cell repertoire. While TCR repertoire of donor T cells in peripheral blood or lymph nodes likely is representative in any individual recipient/patient, it is nearly impossible to identify T-cell clones that are pathogenic and shared among groups of recipients/patients even with the same MHC-disparity between donor and host. Disclosures No relevant conflicts of interest to declare.


Parasitology ◽  
1986 ◽  
Vol 92 (2) ◽  
pp. 325-336 ◽  
Author(s):  
C. F. Kubelka ◽  
A. Ruppel ◽  
P. H. Krammer ◽  
D. Gemsa

SUMMARYThe induction of schistosomulicidal activity of peritoneal macrophages by concanavalin A-stimulated supernatants from long-term T-cell clones and by interferon-gamma (IFN-γ) was investigated in detail. Optimal conditions of in vitro macrophage activation by T-cell clone supernatants were established. Macrophages from 13-week S. mansoni-infected mice responded to lymphokine activation as well as resident mnacrophages from uninfecteci mice. IFN-γ was shown to play an essential role in induction of schistosomulicidal macrophage activity: recombinant IFN-γ at high concentration could induce schistosomula killing, and an anti-IFN-γ antiserum inhibited the induction ofschistosomulicidal activity by T-cell clone supernatants. Our data also indicate that macrophage activation could be obtained by IFN-γ in synergy with other lymphokines in the supernatant of long-term T-cell clones. Macrophages from mice injected with T-cell clone supernatants were primed in vivo and triggered to kill schistosomula in vitro in the presence of lipopolysaccharide (LPS). The data demonstrate that lymphokines produced by T-cell clones and, in particular, IFN-γ can participate in the activation of schistosomulicidal macrophages.


Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1409-1417 ◽  
Author(s):  
J. Marcus Muche ◽  
Ansgar Lukowsky ◽  
Jürgen Heim ◽  
Markus Friedrich ◽  
Heike Audring ◽  
...  

Clinical, immunohistological, and molecular biological data suggest the chronic dermatosis small plaque parapsoriasis (SPP) to be a precursor of mycosis fungoides (MF). However, most data are contradictory and confusing due to inexact definition of SPP. Recently, clonal T cells were detected in skin and blood samples of early MF. Because demonstration of identical T-cell clones in skin and blood of SPP patients would indicate a close relationship of SPP to MF, we investigated the clonality of skin and blood specimens from 14 well-defined SPP patients. By a polymerase chain reaction (PCR) amplifying T-cell receptor γ rearrangements and subsequent high-resolution electrophoresis, clonal T cells were detected in 9 of 14 initial and 32 of 49 follow-up blood samples, but in 0 of 14 initial skin specimens. Even a clone-specific PCR showing the persistence of the initial blood T-cell clone in 20 of 20 follow-up samples, failed to detect the T-cell clone in the skin. In 2 patients, the clonal T cells were shown to be CD4+. For the first time, the majority of SPP patients was shown to carry a T-cell clone in the peripheral blood. Although a relation between circulating clonal T cells and SPP cannot directly be proven by the applied techniques, our results indicate blood T-cell clonality to be a characteristic feature of SPP and CTCL because analysis of multiple controls and clinical workup of our SPP patients excluded other factors simulating or causing a clonal T-cell proliferation. A sufficient cutaneous antitumor response but also an extracutaneous origin of the T-cell clones might explain the failure to detect skin infiltrating clonal T cells.


1984 ◽  
Vol 159 (3) ◽  
pp. 906-920 ◽  
Author(s):  
C L Reinisch ◽  
A P Sing ◽  
E R Bacon ◽  
R B Corley ◽  
R K Gershon

A series of Thy-1.2+ Ly-1+ Qa-1+ malignant T cell clones have been isolated from murine sarcoma virus-murine leukemia-Moloney (MSV-MuLV-M)-induced B cell lymphomas or from MSV-MuLV-M-infected B6 mice. These T cell clones enhance both antigen-independent and -dependent lymphocyte differentiation and function. They also induce the differentiation of granulocytes and erythrocytes in the stem cell compartment, a function that parallels the immunopathology of the disease in vivo. The malignant T cell appears to sustain B lymphoma growth in vivo by releasing a factor (BCGF) that promotes B cell proliferation.


1986 ◽  
Vol 163 (3) ◽  
pp. 713-723 ◽  
Author(s):  
D Y Leung ◽  
M C Young ◽  
N Wood ◽  
R S Geha

Two human alloreactive T cell clones were established from a one-way mixed lymphocyte culture involving two nonatopic donors, and were assessed for their capacity to induce IgE synthesis by B cells obtained from the original stimulator. The two alloreactive T cell clones studied induced IgG but not IgE synthesis in normal B cells. However, one of the two clones, clone 2H6, induced IgE synthesis in the presence of supernatants from T cell lines derived from patients with the hyper-IgE syndrome (HIE), and enriched for T cells bearing receptors for IgE. These supernatants by themselves caused no IgE synthesis in nonatopic B cells. The potentiating factors in these supernatants were shown to bind to IgE. Time sequence experiments indicated that interaction of the B cells with the alloreactive clone 2H6 renders them responsive to the action of the IgE-potentiating factors. These results indicate that induction of IgE synthesis in normal B cells involves at least two sequential T cell derived signals. Furthermore, T cell clones are heterogenous in their capacity to provide these signals.


1982 ◽  
Vol 155 (4) ◽  
pp. 1100-1107 ◽  
Author(s):  
A J Infante ◽  
P D Infante ◽  
S Gillis ◽  
C G Fathman

Alloreactive T cell clones with distinct specificities were used to raise anti-idiotypic antisera via an F1 anti-(parent anti-F1) protocol. Antisera were raised that could stimulate the proliferation of the appropriate T cell clone, but not other clones. The active fraction of the antisera for T cell proliferation was immunoglobulin. In addition to proliferation, an anti-idiotypic antiserum could induce the appropriate T cell clone to secrete substantial amounts of interleukin 2 (IL-2). Production of IL-2 appeared independent of the involvement of accessory cells. These accessory cells may be unnecessary for IL-2 production in our assay, or their effect may be produced by anti-idiotype. Thus, anti-idiotype may provide two or more specific T cell signals.


1999 ◽  
Vol 189 (10) ◽  
pp. 1591-1600 ◽  
Author(s):  
Philippe Bousso ◽  
Jean-Pierre Levraud ◽  
Philippe Kourilsky ◽  
Jean-Pierre Abastado

Primary T cell responses rely on the recruitment and proliferation of antigen-specific T cell precursors. The extent of expansion of each individual T cell clone may depend on (a) its frequency before immunization, (b) its proliferative capacity, and (c) the time at which it first encounters its cognate antigen. In this report, we have analyzed the relative contribution of each of these parameters to the shaping of immune repertoires in the T cell response specific for the epitope 170-179 derived from HLA-Cw3 and presented by Kd. By means of hemisplenectomy, we compared immune and naive repertoires in the same animal and found that the frequency of all expanded T cell clones was extremely low before immunization. In particular, the most expanded clones did not derive from high-frequency precursors. In addition, recruited T cells were found to proliferate at the same rate, irrespective of their T cell antigen receptor sequence. Finally, we showed that only T cells that encounter the antigen at early time points account for a significant part of the specific response. Therefore, the contribution of a T cell clone to the immune response is mostly determined by the time of its entry into the immune repertoire, i.e., the time of first cell division after antigen encounter.


Sign in / Sign up

Export Citation Format

Share Document