scholarly journals Tumor necrosis factor alpha activates soluble guanylate cyclase in bovine glomerular mesangial cells via an L-arginine-dependent mechanism.

1990 ◽  
Vol 172 (6) ◽  
pp. 1843-1852 ◽  
Author(s):  
P A Marsden ◽  
B J Ballermann

Endothelium-derived nitric oxide (NO) causes vasodilatation by activating soluble guanylate cyclase, and glomerular mesangial cells respond to NO with elevations of intracellular guanosine 3',5'-cyclic monophosphate (cGMP). We explored whether mesangial cells can be stimulated to produce NO and whether NO modulates mesangial cell function in an autocrine or paracrine fashion. Tumor necrosis factor alpha (TNF-alpha) raised mesangial cell cGMP levels in a time- and concentration-dependent manner (threshold dose 1 ng/ml, IC50 13.8 ng/ml, maximal response 100 ng/ml). TNF-alpha-induced increases in mesangial cGMP content were evident at 8 h and maximal at 18-24 h. The TNF-alpha-induced stimulation of mesangial cell cGMP production was abrogated by actinomycin D or cycloheximide suggesting dependence on new RNA or protein synthesis. Hemoglobin and methylene blue, both known to inhibit NO action, dramatically reduced TNF-alpha-induced mesangial cell cGMP production. Superoxide dismutase, known to potentiate NO action, augmented the TNF-alpha-induced effect. Ng-monomethyl-L-arginine (L-NMMA) decreased cGMP levels in TNF-alpha-treated, but not vehicle-treated mesangial cells in a concentration-dependent manner (IC50 53 microM). L-arginine had no effect on cGMP levels in control or TNF-alpha-treated mesangial cells but reversed L-NMMA-induced inhibition. Interleukin 1 beta and lipopolysaccharide (LPS), but not interferon gamma, also increased mesangial cell cGMP content. Transforming growth factor beta 1 blunted the mesangial cell response to TNF-alpha. TNF-alpha-induced L-arginine-dependent increases in cGMP were also evident in bovine renal artery vascular smooth muscle cells, COS-1 cells, and 1502 human fibroblasts. These findings suggest that TNF-alpha induces expression in mesangial cell of an enzyme(s) involved in the formation of L-arginine-derived NO. Moreover, the data indicate that NO acts in an autocrine and paracrine fashion to activate mesangial cell soluble guanylate cyclase. Cytokine-induced formation of NO in mesangial and vascular smooth muscle cells may be implicated in the pathogenesis of septic shock.

1999 ◽  
Vol 10 (12) ◽  
pp. 2495-2502 ◽  
Author(s):  
MASAKAZU KOHNO ◽  
KENICHI YASUNARI ◽  
MIEKO MINAMI ◽  
HIROAKI KANO ◽  
KENSAKU MAEDA ◽  
...  

Abstract. This study sought to determine whether platelet-derived growth factor (PDGF) and angiotensin II (AngII) stimulate migration of cultured rat glomerular mesangial cells. After finding that this was so, the effects of adrenomedullin (ADM) and cAMP-elevating agents on basal and stimulated mesangial cell migration were examined. Two isoforms of PDGF, AB and BB, stimulated migration in a concentration-dependent manner between 1 and 50 ng/ml, while the AA isoform lacked significant effect. AngII modestly but significantly stimulated migration in a concentration-dependent manner between 10-7 and 10-6 mol/L. Rat ADM significantly inhibited the PDGF BB- and AngII-stimulated migration in a concentration-dependent manner between 10-8 and 10-7 mol/L. Inhibition by rat ADM was accompanied by an increase in cellular cAMP. cAMP agonists or inducers such as 8-bromo cAMP, forskolin, and prostaglandin I2 also significantly reduced the stimulated migration. H 89, a protein kinase A (PKA) inhibitor, attenuated the inhibitory effect of ADM, and a calcitonin gene-related peptide (CGRP) receptor antagonist, human CGRP (8-37), abolished the inhibitory effects of rat ADM. These results suggest that PDGF AB and BB as well as AngII stimulate rat mesangial cell migration and that ADM can inhibit PDGF BB- and AngII-stimulated migration, at least in part through cAMP-dependent mechanisms likely to involve specific ADM receptors with which CGRP interacts. The adenylate cyclase/cAMP/PKA system may be involved in the migration-inhibitory effect of ADM in these cells.


1986 ◽  
Vol 251 (6) ◽  
pp. F1036-F1042 ◽  
Author(s):  
R. G. Appel ◽  
J. Wang ◽  
M. S. Simonson ◽  
M. J. Dunn

Differential in vivo glomerular effects of atriopeptin I (AP I) and atriopeptin III (AP III) were studied in parallel with in vitro physiological and biochemical parameters. In anesthetized Sprague-Dawley rats, AP III, but not AP I, significantly increased glomerular filtration rate. Image analysis microscopy was used to assess the effect of AP I and AP III on angiotensin II (ANG II)-induced contraction of cultured rat glomerular mesangial cells. AP III, but not AP I, inhibited ANG II-induced mesangial cell contraction in a concentration-dependent manner. Additional inhibitory agents included exogenous DBcGMP, 8-BrcGMP, Na nitroprusside, and DBcAMP. AP III stimulated mesangial cell cGMP with a lower threshold and greater maximum stimulation than AP I. Neither agent stimulated cAMP accumulation. Since mesangial cell contractility may regulate the glomerular capillary surface area, these results suggest that AP III partially mediates its glomerular effects through inhibition of ANG II-induced mesangial cell contraction. Whereas cGMP is not clearly implicated as the mediator of this effect, it appears that both cGMP and cAMP may regulate the state of mesangial cell contractility.


1991 ◽  
Vol 261 (4) ◽  
pp. C634-C641 ◽  
Author(s):  
S. Lamas ◽  
T. Michel ◽  
B. M. Brenner ◽  
P. A. Marsden

Nitric oxide (NO) release accounts for the biological activity of endothelium-derived relaxing factor. Given that tumor necrosis factor-alpha (TNF-alpha) has been implicated as an important mediator in septic shock, we explored whether TNF-alpha enhances L-arginine-dependent synthesis of NO and L-citrulline in endothelial cells. The release of NO was detected in a coincubation bioassay where measurement of guanosine 3',5'-cyclic monophosphate (cGMP) production in reporter monolayers, namely glomerular mesangial cells or fetal lung fibroblasts, reflected activation of soluble guanylate cyclase. Reporter monolayer cGMP content was greater in the presence of TNF-alpha-treated bovine aortic and renal artery endothelial cells than in the presence of vehicle-treated endothelial cells. TNF-alpha-stimulated endothelium-dependent increases in reporter monolayer cGMP content were first evident at 8 h and maximal at 16-24 h. In addition, TNF-alpha-stimulated endothelium-dependent increases in reporter monolayer cGMP content were abrogated by hemoglobin and methylene blue, blunted by N omega-nitro-L-arginine and augmented by superoxide dismutase and the calcium agonist bradykinin. These observations suggested that TNF-alpha enhanced release of NO. Furthermore, the formation of L-[14C]citrulline from L-[14C]arginine, as determined by quantitative cation-exchange chromatography and thin-layer chromatography, was enhanced by TNF-alpha in a time- and concentration-dependent manner. Thus it is evident that endothelial cells release NO for a prolonged period in response to TNF-alpha and transiently when stimulated with calcium agonists. The prolonged release of NO from TNF-alpha-stimulated endothelial cells may be implicated in the pathogenesis of septic shock.


1993 ◽  
Vol 264 (4) ◽  
pp. F678-F683 ◽  
Author(s):  
M. Kohno ◽  
T. Horio ◽  
M. Ikeda ◽  
K. Yokokawa ◽  
T. Fukui ◽  
...  

The present study examined the effects of atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP, respectively) on endothelin-1 (ET-1) secretion after stimulation with arginine vasopressin (AVP), using cultured rat glomerular mesangial cells. AVP stimulated immunoreactive (ir) ET-1 secretion in a concentration-dependent manner via a receptor-mediated process. Rat ANP-(1-28) and rat BNP-45 potently inhibited this stimulated secretion in a concentration-dependent manner. Inhibition by ANP and BNP of AVP-stimulated ET-1 secretion was paralleled by an increase in the medium level of guanosine 3',5'-cyclic monophosphate (cGMP). The addition of a cGMP analogue, 8-bromo-cGMP, reduced the stimulated ET-1 secretion. CNP was much less effective than rat ANP-(1-28) or rat BNP-45 with respect to inhibiting irET-1 secretion and increasing cGMP levels. High-performance liquid chromatography indicated that the major component of irET-1 in the culture medium corresponds to ET-1-(1-21). These findings indicate that AVP stimulates ET-1 secretion in cultured rat mesangial cells and that rat ANP and BNP inhibit this stimulated secretion, probably through a cGMP-dependent process.


1992 ◽  
Vol 263 (6) ◽  
pp. F1020-F1025 ◽  
Author(s):  
R. M. Edwards ◽  
M. Pullen ◽  
P. Nambi

The effects of endothelins (ET) on guanosine 3',5'-cyclic monophosphate (cGMP) levels in intact rat glomeruli were examined. ET-3 produced a rapid approximately fivefold increase in cGMP levels with the maximum effect occurring at 1 min. The ET-3-induced increase in cGMP accumulation occurred in the absence and presence of 3-isobutyl-1-methylxanthine. ET-1, ET-2, ET-3, and the structurally related toxin, sarafotoxin S6c, all increased glomerular cGMP levels in a concentration-dependent manner and with similar potencies (EC50 approximately 15-30 nM). The L-arginine analogue, N omega-nitro-L-arginine (L-NNA), reduced basal levels of cGMP and also totally inhibited ET-induced increases in cGMP as did methylene blue, an inhibitor of soluble guanylate cyclase. The effect of L-NNA was attenuated by L-arginine but not by D-arginine. The stimulation of cGMP accumulation by ET-3 was dependent on extracellular Ca2+ and was additive to atriopeptin III but not to acetylcholine. The ETA-selective antagonist, BQ 123, had no effect on ET-3-induced formation of cGMP. Glomerular membranes displayed high-affinity (Kd = 130-150 pM) and high-density (approximately 2.0 pmol/mg) binding sites for 125I-ET-1 and 125I-ET-3. ET-1, ET-3, and sarafotoxin S6c displaced 125I-ET-1 binding to glomerular membranes with similar affinities. BQ 123 had no effect on 125I-ET-1 binding. We conclude that ET increases cGMP levels in glomeruli by stimulating the formation of a nitric oxide-like factor that activates soluble guanylate cyclase. This effect of ET appears to be mediated by activation of ETB receptors and may serve to modulate the contractile effects of ET.


1992 ◽  
Vol 263 (1) ◽  
pp. F97-F102 ◽  
Author(s):  
D. W. Coyne ◽  
M. Nickols ◽  
W. Bertrand ◽  
A. R. Morrison

The cytokines, interleukin-1 (IL-1) and tumor necrosis factor (TNF), potently induce prostaglandin formation in glomerular mesangial cells. Mechanisms by which these cytokines stimulate prostaglandin formation vary among cell types. We investigated whether alterations in phospholipase A2 (PLA2) or cyclooxygenase (COX) mass and activity contribute to the changes in mesangial cell prostaglandin production. These cytokines induced COX activity and mass in a time-dependent manner, which paralleled prostaglandin production. IL-1 increased COX mass approximately threefold by 24 h. TNF had a much smaller effect, although it appeared to be additive with IL-1. IL-1-induced COX mass was maintained at an increased level for at least 48 h. The glucocorticoid dexamethasone (DEX) virtually abolished prostaglandin production and blocked cytokine induction of COX activity and mass. DEX did not reduce COX activity or mass below the basal, serum-fed levels, however. By utilizing stable isotope methods, we could demonstrate that IL-1 increased free arachidonate levels, implying new PLA2 synthesis over a time course that was maximal at 6 h and was cycloheximide and actinomycin D sensitive. These data demonstrate that the cytokines IL-1 and TNF enhance synthesis of COX and PLA2, contributing to increased prostaglandin production. Cytokine-stimulated prostaglandin production ceases when cells are also treated with DEX, although control levels of COX activity and mass remain. This occurs because DEX inhibits the IL-1-induced enhanced arachidonate release.


1989 ◽  
Vol 257 (3) ◽  
pp. F478-F485
Author(s):  
T. C. Knauss ◽  
P. Mene ◽  
S. A. Ricanati ◽  
M. Kester ◽  
G. R. Dubyak ◽  
...  

Glomerulonephritis is frequently associated with immunoglobulin deposition in the mesangium. We had previously shown that contractile, rat mesangial cells in culture synthesize superoxide anion after binding immune complexes (IC) in a manner dependent on the Fc region of immunoglobulin G (IgG). We now studied the effects of soluble IC on mesangial cell cytosolic free calcium ([Ca2+]i) and phosphatidylinositol turnover as putative mechanisms of transmembrane signaling as well as prostaglandin biosynthesis and contraction. IC (500 micrograms specific antibody) raised [Ca2+]i in mesangial cells loaded with fura-2 from resting levels of 100.4 +/- 8.0 to a peak of 282.3 +/- 31.5 nM in a dose-dependent manner. Removal of extracellular Ca2+ by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid only slightly reduced peak, IC-stimulated [Ca2+]i to 236 +/- 18 nM but prevented the sustained phase of the response, indicating that IC both mobilized Ca2+ from intracellular stores and increased the influx of Ca2+ across the plasma membrane. IC did not increase water-soluble inositol phosphates, measured by anion-exchange chromatography of trichloroacetic acid-extracted cells but markedly stimulated PGE2 and thromboxane B2 synthesis in a dose- and time-dependent manner. Finally, IC (250 micrograms specific antibody) induced 45.8 +/- 10.1% of the cells to contract with an average decrease in cross-sectional surface area of 20.0 +/- 1.8% of basal as assessed by image-analysis microscopy. IC formed with F(ab')2 fragments of antibody and antigen or mixtures of antigen and nonimmune whole molecule antibody did not alter [Ca2+]i, induce prostaglandin synthesis, or stimulate mesangial cell contraction.(ABSTRACT TRUNCATED AT 250 WORDS)


2012 ◽  
Vol 58 (1) ◽  
pp. 32-42 ◽  
Author(s):  
N.V. Pyatakova ◽  
I.S. Severina

The influence of ambroxol - a mucolytic drug - on the activity of human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase and activation of both enzymes by NO-donors (sodium nitroprusside and Sin-1) were investigated. Ambroxol in the concentration range from 0.1 to 10 μM had no effect on the basal activity of both enzymes. Ambroxol inhibited in a concentration-dependent manner the sodium nitroprusside-induced human platelet soluble guanylate cyclase and rat lung soluble guanylate cyclase with the IC50 values 3.9 and 2.1 μM, respectively. Ambroxol did not influence the stimulation of both enzymes by protoporphyrin IX.The influence of artemisinin - an antimalarial drug - on human platelet soluble guanylate cyclase activity and the enzyme activation by NO-donors were investigated. Artemisinin (0.1-100 μM) had no effect on the basal activity of the enzyme. Artemisinin inhibited in a concentration-dependent manner the sodium nitroprusside-induced activation of human platelet guanylate cyclase with an IC50 value 5.6 μM. Artemisinin (10 μM) also inhibited (by 71±4.0%) the activation of the enzyme by thiol-dependent NO-donor the derivative of furoxan, 3,4-dicyano-1,2,5-oxadiazolo-2-oxide (10 μM), but did not influence the stimulation of soluble guanylate cyclase by protoporphyrin IX. It was concluded that the sygnalling system NO-soluble guanylate cyclase-cGMP is involved in the molecular mechanism of the therapeutic action of ambroxol and artemisinin.


1993 ◽  
Vol 265 (1) ◽  
pp. C92-C98 ◽  
Author(s):  
J. Mattana ◽  
P. C. Singhal

Macromolecular handling by macrophages and glomerular mesangial cells may be important in the development of renal injury. We undertook the present study to determine whether atrial natriuretic peptide (ANP), a particulate guanylate cyclase stimulator, plays a direct role in uptake of immunoglobulin G (IgG) complexes by macrophages. Macrophages incubated with ANP at 10(-5) and 10(-6) M showed significantly suppressed uptake of IgG complexes compared with control. Macrophage uptake of IgG complexes was also significantly suppressed by the soluble guanylate cyclase stimulator sodium nitroprusside. Dibutyryl guanosine 3',5'-cyclic monophosphate and dibutyryl adenosine 3',5'-cyclic monophosphate both significantly suppressed IgG complex uptake as well. ANP was found to significantly enhance macrophage guanosine 3',5'-cyclic monophosphate (cGMP) levels compared with control cells, and this effect was antagonized by angiotensin II. Angiotensin II significantly enhanced uptake of IgG complexes and suppressed macrophage adenosine 3',5'-cyclic monophosphate synthesis, and both effects were antagonized by coincubation with ANP. These results suggest that ANP modulates uptake of IgG complexes by macrophages and that this effect may be mediated via cGMP.


1992 ◽  
Vol 73 (6) ◽  
pp. 2483-2492 ◽  
Author(s):  
A. Johnson ◽  
T. J. Ferro

We tested the hypothesis that tumor necrosis factor-alpha (TNF-alpha) increases pulmonary vasoconstriction by decreases in nitric oxide- (NO) dependent vasodilation. Lungs were isolated from guinea pigs 18 h after intraperitoneal injection of either TNF-alpha (1.60 x 10(5) U/kg) or control. U-46619 (365 mM/min) caused increases in pulmonary arterial and capillary pressures, pulmonary arterial and venous resistances, and lung weight. TNF-alpha augmented the U-46619-induced increases in pulmonary arterial and capillary pressures, pulmonary arterial and venous resistances, and lung weight. Methylene blue (1 microM), which inhibits the activation of soluble guanylate cyclase by NO, had an effect similar to TNF-alpha on the pulmonary response to U-46619 alone but was not additive to the effect of TNF-alpha. NG-monomethyl-L-arginine (270 microM), an inhibitor of NO generation, also enhanced the response to U-46619. Lung effluent levels of nitrite, the oxidation product of NO, were reduced after treatment with either TNF-alpha or NG-monomethyl-L-arginine compared with U-46619 alone. In addition, lungs isolated after TNF-alpha treatment showed decreased vasodilation in response to acetylcholine (10(-8)-10(-5) M) compared with control; however, vasodilation in response to L-arginine (10 mM) and nitroprusside (10(-6.3) and 10(-6) M), agents that promote NO release, was not decreased in TNF-alpha-treated lungs. The data indicate that TNF-alpha induces an increase in vascular constriction in response to U-46619 and a decrease in vasodilation in response to acetylcholine. The mechanism for the TNF-alpha-induced alteration in pulmonary vascular reactivity may be decreased generation of NO.


Sign in / Sign up

Export Citation Format

Share Document