scholarly journals An evaluation of the potential to use tumor-associated antigens as targets for antitumor T cell therapy using transgenic mice expressing a retroviral tumor antigen in normal lymphoid tissues.

1993 ◽  
Vol 177 (6) ◽  
pp. 1681-1690 ◽  
Author(s):  
J Hu ◽  
W Kindsvogel ◽  
S Busby ◽  
M C Bailey ◽  
Y Y Shi ◽  
...  

A major obstacle to the development of T cell therapy for the treatment of human tumors has been the difficulty generating T cells specifically reactive with the tumor. Most of the characterized human tumor antigens have been classified as tumor associated, because of demonstrable expression at low levels in some normal cells, and thus have not been extensively studied as potential targets of a therapeutic immune response. However, the quantitative difference in expression of such antigens between the tumor and normal cells might permit the generation of antigen-specific T cells capable of selective antitumor and not autoimmune activity. To address this issue, transgenic (TG) mice were generated that expressed low levels of Friend murine leukemia virus (FMuLV) envelope protein in lymphoid cells under the control of an immunoglobulin promoter. This protein is expressed at high levels by a Friend virus-induced erythroleukemia of C57BL/6 (B6) origin, FBL, and has been shown to serve as an efficient tumor-specific rejection antigen in B6 mice. The env-TG mice were tolerant to envelope, as reflected by the failure to detect an envelope-specific response after in vivo priming and in vitro stimulation with preparations of FMuLV envelope. However, adoptively transferred envelope-specific T cells from immunized non-TG B6 mice mediated complete eradication of FBL tumor cells in TG mice, and did not induce detectable autoimmune damage to TG lymphoid tissues. The transferred immune cells were not permanently inactivated in the TG mice, since donor T cells responded to envelope after removal from the TG mice. The lack of autoimmune injury did not reflect inadequate expression of envelope by TG lymphocytes for recognition by T cells, since TG lymphocytes functioned effectively in vitro as stimulators for envelope-specific T cells. The results suggest that this and analogous strains of TG mice may prove useful for elucidating principles for the generation and therapeutic use of tumor-reactive T cells specific for tumor-associated antigens.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A172-A172
Author(s):  
Guillermo Rangel Rivera ◽  
Guillermo Rangel RIvera ◽  
Connor Dwyer ◽  
Dimitrios Arhontoulis ◽  
Hannah Knochelmann ◽  
...  

BackgroundDurable responses have been observed with adoptive T cell therapy (ACT) in some patients. However, current protocols used to expand T cells often exhibit suboptimal tumor control. Failure in these therapies has been attributed to premature differentiation and impaired metabolism of the infused T cells. Previous work done in our lab showed that reduced PI3Kδ signaling improved ACT. Because PI3Kγ and PI3Kδ have critical regulatory roles in T cell differentiation and function, we tested whether inhibiting PI3Kγ could recapitulate or synergize PI3Kδ blockade.MethodsTo test this, we primed melanoma specific CD8+ pmel-1 T cells, which are specific to the glycoprotein 100 epitope, in the presence of PI3Kγ (IPI-459), PI3Kδ (CAL101 or TGR-1202) or PI3Kγ/δ (IPI-145) inhibitors following antigen stimulation with hgp100, and then infused them into 5Gy total body irradiated B16F10 tumor bearing mice. We characterized the phenotype of the transferred product by flow cytometry and then assessed their tumor control by measuring the tumor area every other day with clippers. For metabolic assays we utilized the 2-NBDG glucose uptake dye and the real time energy flux analysis by seahorse.ResultsSole inhibition of PI3Kδ or PI3Kγ in vitro promoted greater tumor immunity and survival compared to dual inhibition. To understand how PI3Kδ or PI3Kγ blockade improved T cell therapy, we assessed their phenotype. CAL101 treatment produced more CD62LhiCD44lo T cells compared to IPI-459, while TGR-1202 enriched mostly CD62LhiCD44hi T cells. Because decreased T cell differentiation is associated with mitochondrial metabolism, we focused on CAL101 treated T cells to study their metabolism. We found that CAL101 decreased glucose uptake and increased mitochondrial respiration in vitro, indicating augmented mitochondrial function.ConclusionsThese findings indicate that blocking PI3Kδ is sufficient to mediate lasting tumor immunity of adoptively transferred T cells by preventing premature differentiation and improving mitochondrial fitness. Our data suggest that addition of CAL101 to ACT expansion protocols could greatly improve T cell therapies for solid tumors by preventing T cell differentiation and improving mitochondrial function.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A133-A133
Author(s):  
Cheng-Fu Kuo ◽  
Yi-Chiu Kuo ◽  
Miso Park ◽  
Zhen Tong ◽  
Brenda Aguilar ◽  
...  

BackgroundMeditope is a small cyclic peptide that was identified to bind to cetuximab within the Fab region. The meditope binding site can be grafted onto any Fab framework, creating a platform to uniquely and specifically target monoclonal antibodies. Here we demonstrate that the meditope binding site can be grafted onto chimeric antigen receptors (CARs) and utilized to regulate and extend CAR T cell function. We demonstrate that the platform can be used to overcome key barriers to CAR T cell therapy, including T cell exhaustion and antigen escape.MethodsMeditope-enabled CARs (meCARs) were generated by amino acid substitutions to create binding sites for meditope peptide (meP) within the Fab tumor targeting domain of the CAR. meCAR expression was validated by anti-Fc FITC or meP-Alexa 647 probes. In vitro and in vivo assays were performed and compared to standard scFv CAR T cells. For meCAR T cell proliferation and dual-targeting assays, the meditope peptide (meP) was conjugated to recombinant human IL15 fused to the CD215 sushi domain (meP-IL15:sushi) and anti-CD20 monoclonal antibody rituximab (meP-rituximab).ResultsWe generated meCAR T cells targeting HER2, CD19 and HER1/3 and demonstrate the selective specific binding of the meditope peptide along with potent meCAR T cell effector function. We next demonstrated the utility of a meP-IL15:sushi for enhancing meCAR T cell proliferation in vitro and in vivo. Proliferation and persistence of meCAR T cells was dose dependent, establishing the ability to regulate CAR T cell expansion using the meditope platform. We also demonstrate the ability to redirect meCAR T cells tumor killing using meP-antibody adaptors. As proof-of-concept, meHER2-CAR T cells were redirected to target CD20+ Raji tumors, establishing the potential of the meditope platform to alter the CAR specificity and overcome tumor heterogeneity.ConclusionsOur studies show the utility of the meCAR platform for overcoming key challenges for CAR T cell therapy by specifically regulating CAR T cell functionality. Specifically, the meP-IL15:sushi enhanced meCAR T cell persistence and proliferation following adoptive transfer in vivo and protects against T cell exhaustion. Further, meP-ritiuximab can redirect meCAR T cells to target CD20-tumors, showing the versatility of this platform to address the tumor antigen escape variants. Future studies are focused on conferring additional ‘add-on’ functionalities to meCAR T cells to potentiate the therapeutic effectiveness of CAR T cell therapy.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lena Andersch ◽  
Josefine Radke ◽  
Anika Klaus ◽  
Silke Schwiebert ◽  
Annika Winkler ◽  
...  

Abstract Background Chimeric antigen receptor (CAR)-based T cell therapy is in early clinical trials to target the neuroectodermal tumor, neuroblastoma. No preclinical or clinical efficacy data are available for retinoblastoma to date. Whereas unilateral intraocular retinoblastoma is cured by enucleation of the eye, infiltration of the optic nerve indicates potential diffuse scattering and tumor spread leading to a major therapeutic challenge. CAR-T cell therapy could improve the currently limited therapeutic strategies for metastasized retinoblastoma by simultaneously killing both primary tumor and metastasizing malignant cells and by reducing chemotherapy-related late effects. Methods CD171 and GD2 expression was flow cytometrically analyzed in 11 retinoblastoma cell lines. CD171 expression and T cell infiltration (CD3+) was immunohistochemically assessed in retrospectively collected primary retinoblastomas. The efficacy of CAR-T cells targeting the CD171 and GD2 tumor-associated antigens was preclinically tested against three antigen-expressing retinoblastoma cell lines. CAR-T cell activation and exhaustion were assessed by cytokine release assays and flow cytometric detection of cell surface markers, and killing ability was assessed in cytotoxic assays. CAR constructs harboring different extracellular spacer lengths (short/long) and intracellular co-stimulatory domains (CD28/4-1BB) were compared to select the most potent constructs. Results All retinoblastoma cell lines investigated expressed CD171 and GD2. CD171 was expressed in 15/30 primary retinoblastomas. Retinoblastoma cell encounter strongly activated both CD171-specific and GD2-specific CAR-T cells. Targeting either CD171 or GD2 effectively killed all retinoblastoma cell lines examined. Similar activation and killing ability for either target was achieved by all CAR constructs irrespective of the length of the extracellular spacers and the co-stimulatory domain. Cell lines differentially lost tumor antigen expression upon CAR-T cell encounter, with CD171 being completely lost by all tested cell lines and GD2 further down-regulated in cell lines expressing low GD2 levels before CAR-T cell challenge. Alternating the CAR-T cell target in sequential challenges enhanced retinoblastoma cell killing. Conclusion Both CD171 and GD2 are effective targets on human retinoblastoma cell lines, and CAR-T cell therapy is highly effective against retinoblastoma in vitro. Targeting of two different antigens by sequential CAR-T cell applications enhanced tumor cell killing and preempted tumor antigen loss in preclinical testing.


2020 ◽  
Vol 8 (2) ◽  
pp. e000896
Author(s):  
Talia Velasco-Hernandez ◽  
Samanta Romina Zanetti ◽  
Heleia Roca-Ho ◽  
Francisco Gutierrez-Aguera ◽  
Paolo Petazzi ◽  
...  

BackgroundThere are few therapeutic options available for patients with B-cell acute lymphoblastic leukemia (B-ALL) relapsing as CD19– either after chemotherapy or CD19-targeted immunotherapies. CD22-chimeric antigen receptor (CAR) T cells represent an attractive addition to CD19-CAR T cell therapy because they will target both CD22+CD19– B-ALL relapses and CD19– preleukemic cells. However, the immune escape mechanisms from CD22-CAR T cells, and the potential contribution of the epitope binding of the anti-CD22 single-chain variable fragment (scFv) remain understudied.MethodsHere, we have developed and comprehensively characterized a novel CD22-CAR (clone hCD22.7) targeting a membrane-distal CD22 epitope and tested its cytotoxic effects against B-ALL cells both in in vitro and in vivo assays.ResultsConformational epitope mapping, cross-blocking, and molecular docking assays revealed that the hCD22.7 scFv is a high-affinity binding antibody which specifically binds to the ESTKDGKVP sequence, located in the Ig-like V-type domain, the most distal domain of CD22. We observed efficient killing of B-ALL cells in vitro, although the kinetics were dependent on the level of CD22 expression. Importantly, we show an efficient in vivo control of patients with B-ALL derived xenografts with diverse aggressiveness, coupled to long-term hCD22.7-CAR T cell persistence. Remaining leukemic cells at sacrifice maintained full expression of CD22, ruling out CAR pressure-mediated antigen loss. Finally, the immunogenicity capacity of this hCD22.7-scFv was very similar to that of other CD22 scFv previously used in adoptive T cell therapy.ConclusionsWe report a novel, high-affinity hCD22.7 scFv which targets a membrane-distal epitope of CD22. 4-1BB-based hCD22.7-CAR T cells efficiently eliminate clinically relevant B- CD22high and CD22low ALL primary samples in vitro and in vivo. Our study supports the clinical translation of this hCD22.7-CAR as either single or tandem CD22–CD19-CAR for both naive and anti-CD19-resistant patients with B-ALL.


Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 139 ◽  
Author(s):  
Jing Cui ◽  
Herui Wang ◽  
Rogelio Medina ◽  
Qi Zhang ◽  
Chen Xu ◽  
...  

Chimeric antigen receptor (CAR)-engineered T cells represent a promising modality for treating glioblastoma. Recently, we demonstrated that CAR-T cells targeting carbonic anhydrase IX (CAIX), a protein involved in HIF-1a hypoxic signaling, is a promising CAR-T cell target in an intracranial murine glioblastoma model. Anti-CAIX CAR-T cell therapy is limited by its suboptimal activation within the tumor microenvironment. LB-100, a small molecular inhibitor of protein phosphatase 2A (PP2A), has been shown to enhance T cell anti-tumor activity through activation of the mTOR signaling pathway. Herein, we investigated if a treatment strategy consisting of a combination of LB-100 and anti-CAIX CAR-T cell therapy produced a synergistic anti-tumor effect. Our studies demonstrate that LB-100 enhanced anti-CAIX CAR-T cell treatment efficacy in vitro and in vivo. Our findings demonstrate the role of LB-100 in augmenting the cytotoxic activity of anti-CAIX CAR-T cells and underscore the synergistic therapeutic potential of applying combination LB-100 and CAR-T Cell therapy to other solid tumors.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0223258 ◽  
Author(s):  
Benjamin Faist ◽  
Fabian Schlott ◽  
Christian Stemberger ◽  
Kevin M. Dennehy ◽  
Angela Krackhardt ◽  
...  

2020 ◽  
Vol 217 (12) ◽  
Author(s):  
Shannon K. Oda ◽  
Kristin G. Anderson ◽  
Pranali Ravikumar ◽  
Patrick Bonson ◽  
Nicolas M. Garcia ◽  
...  

Adoptive T cell therapy (ACT) with genetically modified T cells has shown impressive results against some hematologic cancers, but efficacy in solid tumors can be limited by restrictive tumor microenvironments (TMEs). For example, Fas ligand is commonly overexpressed in TMEs and induces apoptosis in tumor-infiltrating, Fas receptor–positive lymphocytes. We engineered immunomodulatory fusion proteins (IFPs) to enhance ACT efficacy, combining an inhibitory receptor ectodomain with a costimulatory endodomain to convert negative into positive signals. We developed a Fas-4-1BB IFP that replaces the Fas intracellular tail with costimulatory 4-1BB. Fas-4-1BB IFP-engineered murine T cells exhibited increased pro-survival signaling, proliferation, antitumor function, and altered metabolism in vitro. In vivo, Fas-4-1BB ACT eradicated leukemia and significantly improved survival in the aggressive KPC pancreatic cancer model. Fas-4-1BB IFP expression also enhanced primary human T cell function in vitro. Thus, Fas-4-1BB IFP expression is a novel strategy to improve multiple T cell functions and enhance ACT against solid tumors and hematologic malignancies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yamin Jie ◽  
Guijun Liu ◽  
Lina Feng ◽  
Ying Li ◽  
Mingyan E ◽  
...  

In spite of impressive success in treating hematologic malignancies, adoptive therapy with chimeric antigen receptor modified T cells (CAR T) has not yet been effective in solid tumors, where identification of suitable tumor-specific antigens remains a major obstacle for CAR T-cell therapy due to the “on target off tumor” toxicity. Protein tyrosine kinase 7 (PTK7) is a member of the Wnt-related pseudokinases and identified as a highly expressed antigen enriched in cancer stem cells (CSCs) from multiple solid tumors, including but not limited to triple-negative breast cancer, non-small-cell lung cancer, and ovarian cancer, suggesting it may serve as a promising tumor-specific target for CAR T-cell therapy. In this study, we constructed three different PTK7-specific CAR (PTK7-CAR1/2/3), each comprising a humanized PTK7-specific single-chain variable fragment (scFv), hinge and transmembrane (TM) regions of the human CD8α molecule, 4-1BB intracellular co-stimulatory domain (BB-ICD), and CD3ζ intracellular domain (CD3ζ-ICD) sequence, and then prepared the CAR T cells by lentivirus-mediated transduction of human activated T cells accordingly, and we sequentially evaluated their antigen-specific recognition and killing activity in vitro and in vivo. T cells transduced with all three PTK7-CAR candidates exhibited antigen-specific cytokine production and potent cytotoxicity against naturally expressing PTK7-positive tumor cells of multiple cancer types without mediating cytotoxicity of a panel of normal primary human cells; meanwhile, in vitro recursive cytotoxicity assays demonstrated that only PTK7-CAR2 modified T cells retained effective through multiple rounds of tumor challenge. Using in vivo xenograft models of lung cancers with different expression levels of PTK7, systemic delivery of PTK7-CAR2 modified T cells significantly prevented tumor growth and prolonged overall survival of mice. Altogether, our results support PTK7 as a therapeutic target suitable for CAR T-cell therapy that could be applied for lung cancers and many other solid cancers with PTK7 overexpression.


2020 ◽  
Author(s):  
Yamin Jie ◽  
Guijun Liu ◽  
Lina Feng ◽  
Ying Li ◽  
Mingyan E ◽  
...  

Abstract Background: In spite of impressive success in treating hematologic malignancies, adoptive therapy with chimeric antigen receptor modified T cells (CAR T) has not yet been effective in solid tumors, where identification of suitable tumor-specific antigens remains a major obstacle for CAR T-cell therapy due to the “on target off tumor” toxicity. Protein tyrosine kinase 7 (PTK7) is a member of the Wnt-related pseudokinases and identified as a highly expressed antigen enriched in cancer stem cells (CSCs) from multiple solid tumors, including but not limited to triple-negative breast cancer, non-small cell lung cancer, and ovarian cancer, suggesting it may serve as a promising tumor-specific target for CAR T-cell therapy. Methods: In this study, we constructed 3 different PTK7-specific CAR (PTK7-CAR1/2/3) each comprising a humanized PTK7-specific single chain variable fragment (scFv), hinge and transmembrane (TM) regions of the human CD8α molecule, 4-1BB intracellular co-stimulatory domain (BB-ICD), and CD3ζ intracellular domain (CD3ζ-ICD) sequence, and then prepared the CAR T cells by lentivirus mediated transduction of human activated T cells accordingly, and sequentially evaluated their antigen-specific recognition and killing activity in vitro and in vivo.Results: T cells transduced with all 3 PTK7-CAR candidates exhibited antigen-specific cytokine production and potent cytotoxicity against naturally expressing PTK7-positive tumor cells of multiple cancer types without mediating cytotoxicity of a panel of normal primary human cells; meanwhile, in vitro recursive cytotoxicity assays demonstrated that only PTK7-CAR2 modified T cells retained effective through multiple rounds of tumor challenge. Using in vivo xenograft models of lung cancers with different expression level of PTK7, systemic delivery of PTK7-CAR2 modified T cells significantly prevented tumor growth and prolonged overall survival of mice. Conclusion: Altogether, our results support PTK7 as a therapeutic target suitable for CAR T-cell therapy that could be applied for lung cancers and many other solid cancers with PTK7 overexpression.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3762-3762
Author(s):  
Challice L. Bonifant ◽  
David Torres ◽  
Mireya Paulina Velasquez ◽  
Kota Iwahori ◽  
Caroline Arber ◽  
...  

Abstract Background: The outcome for patients with high risk acute myeloid leukemia (AML) remains poor. Thus new targeted therapies are needed and immunotherapies have the potential to fulfill this need. Adoptive transfer of tumor-specific T cells is one promising approach; however infused T cells do not redirect the large reservoir of resident T cells to tumors. To overcome this limitation we have recently developed a new approach to render T cells specific for tumor cells, which relies on genetically modifying T cells with a secretable, bispecific T cell engager (ENG-T cells). Secretion of bispecific protein should activate infused cells as well as bystander T cells against tumor. Consistent and prolonged synthesis of engagers by T cells should be superior to the intermittent, direct infusion of the recombinant bispecific antibody, not only because these recombinant proteins have short half-lives but also because they do not accumulate at tumor sites. The goal of this project was to generate T cells secreting IL3Rα (CD123) and CD3 bispecific T cell engagers (CD123-ENG T cells) and to evaluate their effector function in vitro and in vivo. Methods: CD123-ENG T cells were generated by transducing T cells with a retroviral vector encoding a CD123-specific T cell engager consisting of an scFv recognizing CD123 linked to an scFv recognizing CD3. The retroviral vector was also fashioned to include an mOrange gene downstream of an IRES element. The effector function of CD123-ENG T cells was evaluated in vitro and in a xenograft model. Results: Transduction of CD3/CD28-activated T cells resulted in mOrange expression in transduced T cells (median transduction efficiency 78%, range 49-92%) The presence of CD123-ENG molecules on the cell surface of both transduced and non-transduced T cells was demonstrated by FACS analysis using an F(ab) antibody that recognizes the CD123 scFv. Coculture of CD123+ AML cells (MV-4-11, MOLM-1, KG1a) and K562 cells genetically modified to express CD123 (K562-CD123) with engager T cells resulted in robust T-cell activation as judged by IFNγ and IL2 secretion. In contrast CD123-negative cells (K562) did not activate T cells. Likewise, control engager T cells (targeting an irrelevant antigen) were not activated when cultured with CD123+ cells. Antigen-dependent recognition was confirmed with cytotoxicity assays, in which engager T cells specifically killed CD123+ AML cells at an effector:target ratios ranging from 40:1-5:1 (p<0.05) Since CD123 is expressed at low levels on normal hematopoietic progenitor cells (HPCs), we evaluated the ability of CD123-ENG T cells to recognize normal HPCs in colony formation assays. Only at high CD123-ENG to HPC ratios did we observe a decline in colony formation, indicating that CD123+ AML cells can be targeted while preserving normal HPCs. In vivo anti-tumor activity was assessed using a modified KG1a AML cell line expressing firefly luciferase (KG1a.ffluc) to allow for serial bioluminescence imaging. NSG (NOD-SCID, IL2γR deficient) mice were sublethally irradiated 24 hours prior to leukemia infusion and were then treated with two intravenous doses of CD123-ENG T cells or control T cells on days 7 and 14. CD123-ENG T cells had potent anti-leukemia activity resulting in a significant survival advantage of treated animals (p=0.002; n=5 CD123-ENG, n=5 Control-ENG, n=10 control animals). Conclusions: We have generated CD123-ENG T cells with the potential to direct bystander T cells to CD123+ AML in a tumor antigen-specific manner. These CD123-ENG T cells have potent anti-AML activity in vivo, presenting a promising addition to currently available AML therapies. Disclosures Bonifant: Celgene, Bluebird bio: Baylor College of Medicine has a Research Collaboration with Celgene and Bluebirdbio to develop gene-modified T-cell Therapies. MPV, KI, XT, and SG have patent applications in the field of T-cell and gene-modified T-cell Therapy for cancer Other. Torres:Celgene, Bluebird bio: Baylor College of Medicine has a Research Collaboration with Celgene and Bluebirdbio to develop gene-modified T-cell Therapies. MPV, KI, XT, and SG have patent applications in the field of T-cell and gene-modified T-cell Therapy for cancer Other. Velasquez:Celgene, Bluebird bio: Baylor College of Medicine has a Research Collaboration with Celgene and Bluebirdbio to develop gene-modified T-cell Therapies. MPV, KI, XT, and SG have patent applications in the field of T-cell and gene-modified T-cell Therapy for cancer Other. Iwahori:Celgene, Bluebird bio: Baylor College of Medicine has a Research Collaboration with Celgene and Bluebirdbio to develop gene-modified T-cell Therapies. MPV, KI, XT, and SG have patent applications in the field of T-cell and gene-modified T-cell Therapy for cancer Other. Arber:Celgene, Bluebird bio: Baylor College of Medicine has a Research Collaboration with Celgene and Bluebirdbio to develop gene-modified T-cell Therapies. MPV, KI, XT, and SG have patent applications in the field of T-cell and gene-modified T-cell Therapy for cancer Other. Song:Celgene, Bluebird bio: Baylor College of Medicine has a Research Collaboration with Celgene and Bluebirdbio to develop gene-modified T-cell Therapies. MPV, KI, XT, and SG have patent applications in the field of T-cell and gene-modified T-cell Therapy for cancer Other. Gottschalk:Celgene, Bluebird bio: Baylor College of Medicine has a Research Collaboration with Celgene and Bluebirdbio to develop gene-modified T-cell Therapies. MPV, KI, XT, and SG have patent applications in the field of T-cell and gene-modified T-cell Therapy for cancer Other.


Sign in / Sign up

Export Citation Format

Share Document