scholarly journals B cells are essential for murine mammary tumor virus transmission, but not for presentation of endogenous superantigens.

1994 ◽  
Vol 179 (5) ◽  
pp. 1457-1466 ◽  
Author(s):  
U Beutner ◽  
E Kraus ◽  
D Kitamura ◽  
K Rajewsky ◽  
B T Huber

Murine mammary tumor viruses (MMTVs) are retroviruses that encode superantigens capable of stimulating T cells via superantigen-reactive T cell receptor V beta chains. MMTVs are transmitted to the suckling offspring through milk. Here we show that B cell-deficient mice foster nursed by virus-secreting mice do not transfer infectious MMTVs to their offspring. No MMTV proviruses could be detected in the spleen and mammary tissue of these mice, and no deletion of MMTV superantigen-reactive T cells occurred. By contrast, T cell deletion and positive selection due to endogenous MMTV superantigens occurred in B cell-deficient mice. We conclude that B cells are essential for the completion of the viral life cycle in vivo, but that endogenous MMTV superantigens can be presented by cell types other than B cells.

1995 ◽  
Vol 182 (4) ◽  
pp. 915-922 ◽  
Author(s):  
M M Epstein ◽  
F Di Rosa ◽  
D Jankovic ◽  
A Sher ◽  
P Matzinger

B cells are an abundant population of lymphocytes that can efficiently capture, process, and present antigen for recognition by activated or memory T cells. Controversial experiments and arguments exist, however, as to whether B cells are or should be involved in the priming of virgin T cells in vivo. Using B cell-deficient mice, we have studied the role of B cells as antigen-presenting cells in a wide variety of tests, including assays of T cell proliferation and cytokine production in responses to protein antigens, T cell killing to minor and major histocompatibility antigens, skin graft rejection, and the in vitro and in vivo responses to shistosome eggs. We found that B cells are not critical for either CD4 or CD8 T cell priming in any of these systems. This finding lends support to the notion that the priming of T cells is reserved for specialized cells such as dendritic cells and that antigen presentation by B cells serves distinct immunological functions.


2022 ◽  
Vol 11 (1) ◽  
pp. 270
Author(s):  
Martina Hinterleitner ◽  
Clemens Hinterleitner ◽  
Elke Malenke ◽  
Birgit Federmann ◽  
Ursula Holzer ◽  
...  

Immune cell reconstitution after stem cell transplantation is allocated over several stages. Whereas cells mediating innate immunity recover rapidly, adaptive immune cells, including T and B cells, recover slowly over several months. In this study we investigated kinetics and reconstitution of de novo B cell formation in patients receiving CD3 and CD19 depleted haploidentical stem cell transplantation with additional in vivo T cell depletion with monoclonal anti-CD3 antibody. This model enables a detailed in vivo evaluation of hierarchy and attribution of defined lymphocyte populations without skewing by mTOR- or NFAT-inhibitors. As expected CD3+ T cells and their subsets had delayed reconstitution (<100 cells/μL at day +90). Well defined CD19+ B lymphocytes of naïve and memory phenotype were detected at day +60. Remarkably, we observed a very early reconstitution of antibody-secreting cells (ASC) at day +14. These ASC carried the HLA-haplotype of the donor and secreted the isotypes IgM and IgA more prevalent than IgG. They correlated with a population of CD19− CD27− CD38low/+ CD138− cells. Of note, reconstitution of this ASC occurred without detectable circulating T cells and before increase of BAFF or other B cell stimulating factors. In summary, we describe a rapid reconstitution of peripheral blood ASC after CD3 and CD19 depleted haploidentical stem cell transplantation, far preceding detection of naïve and memory type B cells. Incidence before T cell reconstitution and spontaneous secretion of immunoglobulins allocate these early ASC to innate immunity, eventually maintaining natural antibody levels.


2003 ◽  
Vol 197 (2) ◽  
pp. 195-206 ◽  
Author(s):  
Simon Fillatreau ◽  
David Gray

We investigated the mechanism of CD4 T cell accumulation in B cell follicles after immunization. Follicular T cell numbers were correlated with the number of B cells, indicating B cell control of the niche that T cells occupy. Despite this, we found no role for B cells in the follicular migration of T cells. Instead, T cells are induced to migrate into B cell follicles entirely as a result of interaction with dendritic cells (DCs). Migration relies on CD40-dependent maturation of DCs, as it did not occur in CD40-deficient mice but was reconstituted with CD40+ DCs. Restoration was not achieved by the activation of DCs with bacterial activators (e.g., lipopolysaccharide, CpG), but was by the injection of OX40L–huIgG1 fusion protein. Crucially, the up-regulation of OX40L (on antigen-presenting cells) and CXCR-5 (on T cells) are CD40-dependent events and we show that T cells do not migrate to follicles in immunized OX40-deficient mice.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3323-3323
Author(s):  
Philipp J. Jost ◽  
Uta Ferch ◽  
Stephanie Weiss ◽  
Stephanie Leeder ◽  
Olaf Gross ◽  
...  

Abstract Development of immature T cells in the thymus requires signals through the clonotypic T cell receptor (TCR). Thymocytes expressing a functionally inactive or autoreactive TCR are deleted via apoptosis (negative selection). Thymocytes expressing a functionally active but not autoreactive TCR are selected through inhibition of cell death (positive selection). Deregulation of this process is likely to result in autoimmunity or lymphomagenesis of T cells. The intracellular mechanisms by which the balance between TCR-dependent survival and apoptosis are regulated are largely unknown. A central regulator of survival and apoptosis in the immune system is the transcription factor NF-κB. Activation of NF-κB in mature T-cells requires the adaptor proteins Bcl10 and Malt1. Using gene-targeted mice deficient for Bcl10 or Malt1, we show that Bcl10 and Malt1 are also required for TCR-induced NF-κB activation in immature T cells. Furthermore, to elucidate the process of T cell selection within the thymus, we have crossed Bcl10 or Malt1 deficient mice into mice with genetic backgrounds expressing defined TCR transgenes. Using specific peptide agonists of these TCR transgenes, we show that neither in vivo nor in vitro development into single positive (SP) CD4 or CD8 positive T cells is altered in Bcl10 or Malt1 deficient mice. Absolute numbers and ratio of SP T cells found within the thymus or in peripheral lymphnodes of transgenic animals are normal. These findings indicate that Bcl10 and Malt1 activate NF-κB in thymocytes but are dispensable for maturation of immature T cells in this model system.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 119-119
Author(s):  
Rita Simone ◽  
Sonia Marsilio ◽  
Piers E.M. Patten ◽  
Gerardo Ferrer ◽  
Shih-Shih Chen ◽  
...  

Abstract Lenalidomide (Revlimid®), a thalidomide analogue, is an orally administered second generation immunomodulator with anti-angiogenic and anti-neoplastic properties. Initial studies treating patients with chronic lymphocytic leukemia (CLL) suggest that lenalidomide can have considerable efficacy and that its mode of action is mainly indirect, affecting non-malignant cells in the microenvironment, in particular T lymphocytes. Because a recently described xenograft model for CLL has highlighted the importance of CLL-derived, autologous T cells in promoting leukemic B-cell engraftment and growth in vivo, we have studied the influence of lenalidomide on the expansion of CLL B- and T-lymphocytes in this model. After an initial 12 day culture of FACS-isolated CLL-derived T cells with or without anti-CD3/CD28 beads plus IL-2 (30 IU/ml), T lymphocytes were transferred into alymphoid NSG mice via the retro-orbital plexus (day 0). On day 7, CLL cells were delivered retro-orbitally. These recipient animals are referred to as “T + PBMC mice”. Mice that did not receive T cells on day 0 but were given CLL PBMCs at day 7, with or without lenalidomide, served as controls (“PBMC only mice”). Recipient mice received lenalidomide (10mg/kg/day) or vehicle control daily by gavage starting at day 0. All mice were sacrificed at day 28 (28 days after T-cell and 21 days after B-cell transfer), and blood, spleen, and bone marrow were collected. On this material, four analyses were performed: [1] level of human CD45+ cell engraftment; [2] numbers and types of CLL-derived T cells; [3] numbers of CLL B cells; and [4] levels of cytokines reflective of Th1 and Th2 immune responses. There was a clear enhancement in human hematopoietic (CD45+) cell engraftment in those mice exposed to lenalidomide. This was most marked for the PBMC only mice (vehicle: 10.64%; lenalidomide: 38.53%), although it was also evident for T + PBMC mice (vehicle: 55.96%; lenalidomide: 69.65%). T-cell phenotyping was carried out, before and after cell culture and also at sacrifice. Prior to culture, CLL samples contained on average ∼96% CD5+CD19+ cells and ∼3% CD5+CD19- cells; for the latter, ∼67% were CD4+ and ∼33% CD8+. After 12-day culture, these percentages remained largely unchanged. However, the numbers and types of T cells recovered from the spleens at sacrifice were quite different after in vivo exposure to lenalidomide. For the PBMC only, the percentages of CD4+ and CD8+ cells in the spleens differed somewhat based on lenalidomide exposure (CD4: Vehicle 86% vs. Lenalidomide 61%; CD8: Vehicle 10% vs. Lenalidomide 28%). However, this change was dramatic for the T + PBMC mice (CD4: Vehicle 64.1% vs. Lenalidomide 28.9%; CD8: Vehicle 34% vs. Lenalidomide 62%). Furthermore, when the CD8+ cells from these animals were subsetted based on antigen-experience and function, it appeared that lenalidomide exposure had led to the outgrowth of a greater number of effector memory (CD45RO+ CD62L-) than central memory (CD45RO+ CD62L+) T-cells. For CLL-derived B cells, the numbers differed, based not only on lenalidomide exposure but also on prior in vitro activation. Specifically, in PBMC only mice, the addition of lenalidomide led to increased numbers of CLL B cells in the spleen (Vehicle: 7.81% vs. Lenalidomide: 14%). Conversely, in the T + PBMC mice, the numbers of B cells decreased (Vehicle: 2.36% vs. Lenalidomide: 0.34%). An analysis of Th1 and Th2-related cytokines in the plasmas of the mice at sacrifice revealed a fall in IL-4, IL-5, and IL-10 and a marked increase in IFNg, consistent with a Th2 to Th1 transition. The above data suggest that administration of lenalidomide permits greater engraftment of human hematopoietic cells in alymphoid mice. Although this enhancement involves all members of the hematopoietic lineage, T cells, in particular CD8+ effector memory T cells, emerge in excess over time. This CD8 expansion is associated with diminished levels of CLL B cells suggesting that the decrease is due to T-cell mediated cytolysis. In contrast, in the absence of prior T-cell activation, CLL T cells appear to support better CLL B-cell growth. These findings suggest that lenalidomide alters B-cell expansion in vivo depending on the activation and differentiation state of the autologous T-cell compartment. They also implicate the generation of cytolytic T cells as one mechanism whereby lenalidomide leads to clinical improvement in CLL. Disclosures: Allen: Celgene Corporation: Honoraria.


2009 ◽  
Vol 206 (6) ◽  
pp. 1303-1316 ◽  
Author(s):  
Bernadette Pöllinger ◽  
Gurumoorthy Krishnamoorthy ◽  
Kerstin Berer ◽  
Hans Lassmann ◽  
Michael R. Bösl ◽  
...  

We describe new T cell receptor (TCR) transgenic mice (relapsing-remitting [RR] mice) carrying a TCR specific for myelin oligodendrocyte glycoprotein (MOG) peptide 92–106 in the context of I-As. Backcrossed to the SJL/J background, most RR mice spontaneously develop RR experimental autoimmune encephalomyelitis (EAE) with episodes often altering between different central nervous system tissues like the cerebellum, optic nerve, and spinal cord. Development of spontaneous EAE depends on the presence of an intact B cell compartment and on the expression of MOG autoantigen. There is no spontaneous EAE development in B cell–depleted mice or in transgenic mice lacking MOG. Transgenic T cells seem to expand MOG autoreactive B cells from the endogenous repertoire. The expanded autoreactive B cells produce autoantibodies binding to a conformational epitope on the native MOG protein while ignoring the T cell target peptide. The secreted autoantibodies are pathogenic, enhancing demyelinating EAE episodes. RR mice constitute the first spontaneous animal model for the most common form of multiple sclerosis (MS), RR MS.


2013 ◽  
Vol 81 (6) ◽  
pp. 2112-2122 ◽  
Author(s):  
Guoquan Zhang ◽  
Ying Peng ◽  
Laura Schoenlaub ◽  
Alexandra Elliott ◽  
William Mitchell ◽  
...  

ABSTRACTTo further understand the mechanisms of formalin-inactivatedCoxiella burnetiiphase I (PI) vaccine (PIV)-induced protection, we examined if B cell, T cell, CD4+T cell, or CD8+T cell deficiency in mice significantly affects the ability of PIV to confer protection against aC. burnetiiinfection. Interestingly, compared to wild-type (WT) mice, PIV conferred comparable levels of protection in CD4+T cell- or CD8+T cell-deficient mice and partial protection in T cell-deficient mice but did not provide measurable protection in B cell-deficient mice. These results suggest that PIV-induced protection depends on B cells. In addition, anti-PI-specific IgM was the major detectable antibody (Ab) in immune sera from PIV-vaccinated CD4+T cell-deficient mice, and passive transfer of immune sera from PIV-vaccinated CD4+T cell-deficient mice conferred significant protection. These results suggest that T cell-independent anti-PI-specific IgM may contribute to PIV-induced protection. Our results also suggested that PIV-induced protection may not depend on complement activation and Fc receptor-mediated effector functions. Furthermore, our results demonstrated that both IgM and IgG from PIV-vaccinated WT mouse sera were able to inhibitC. burnetiiinfectionin vivo, but only IgM from PIV-vaccinated CD4+T cell-deficient mouse sera inhibitedC. burnetiiinfection. Collectively, these findings suggest that PIV-induced protection depends on B cells to produce protective IgM and IgG and that T cell-independent anti-PI-specific IgM may play a critical role in PIV-induced protection againstC. burnetiiinfection.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 282-282
Author(s):  
Shuangmin Zhang ◽  
Yi Zheng ◽  
Richard Lang ◽  
Fukun Guo

Abstract Abstract 282 RhoA GTPase is an intracellular signal transducer capable of regulating a wide range of cell functions including cytoskeleton dynamics, proliferation, and survival. In lymphocytes, studies by using dominant negative mutant or C3 transferase expressing transgenic mice suggest that RhoA is involved in TCR and BCR signaling and related T cell functions such as polarization, migration, survival, and proliferation. To date, the physiological role of RhoA in lymphocyte development remains unclear. In this study, we have achieved T cell, B cell, and hematopoietic stem cell-specific deletion of RhoA by conditional gene targeting with CD2, CD19 and Mx1 promoter-driven Cre expression, respectively, in the RhoAloxP/loxP mice. First, we found that RhoA gene disruption in early T cells caused a drastic decrease in thymocyte cellularity, with the numbers of CD4−CD8− double negative (DN), CD4+CD8+ double positive (DP), CD4+CD8− single positive (SP), and CD4−CD8+ SP T cells decreased by 88.8% ± 6.0%, 99.4% ± 1.0%, 99.3% ± 1.2%, and 98.6% ± 2.0%, respectively. Among DN subpopulations, CD44+CD25− (DN1), CD44+CD25+ (DN2), CD44−CD25+ (DN3), and CD44−CD25− (DN4) cells were reduced by 91.7% ± 6.0%, 54.9% ± 27.7%, 50.9% ± 33.3%, and 96.7% ± 3.4%, respectively. Further, RhoA knockout led to a significant loss of DP thymocytes at the initial stage (CD69highTCRint) of positive selection, suggesting that RhoA is required for positive selection. The decreased thymocyte cellularity in mutant mice is associated with increased apoptosis of all thymic T lineages. RhoA deficiency also resulted in a perturbation in thymocyte cell cycle progression as manifested by increased BrdU incorporation in DN1 and DN2 cells and decreased BrdU incorporation in DN4 and DP cells. Concomitantly, RhoA-deficient thymocytes showed a 59.8% ± 26.3% reduction in proliferative potential in response to TCR crosslinking. Western blot analysis revealed that the activities of ZAP70, LAT, Akt, Erk, and p38 were impaired in RhoA-/- thymocytes. In periphery, spleens of the RhoA null mice contained 7.4% ± 8.0% of CD4+ T cells and 3.7% ± 2.7% of CD8+ T cells compared with that of wild type (WT) mice. Loss of peripheral mature T cells in mutant mice is reflected by a marked reduction of naive T cells, whereas effector and memory phenotype cells were marginally affected by RhoA deficiency. RhoA-deficient naïve T cells were more susceptible to apoptosis, suggesting that homeostatic defect of naïve T cells in RhoA-/- mice is attributed to impaired cell survival. Abrogation of RhoA caused an increased in vivo BrdU incorporation in naïve T cell compartments. Thus, RhoA deficiency induces naïve T cell homeostatic proliferation, possibly due to a compensatory effect of lymphopenia. In contrast to that in thymocytes, Erk was constitutively activated in RhoA-deficient splenic T cells. These observations implicate RhoA in the multiple stages of T cell development and the proper assembly of early TCR signaling complex. Second, deletion of RhoA in pre-proB cells had no effect on early B cell development in bone marrow but significantly inhibited late B cell development in spleen, resulting in 78.2% ± 13.6%, 78.6% ± 16.9%, and 93.2% ± 3.4% reduction in transitional, follicular, and marginal zone B cells, respectively. Plasma cells in spleen were decreased by 50.9 % ± 25.9% in RhoA null mice. However, we did not detect any changes in survival of in vivo RhoA-/- B cells or RhoA-/- B cells cultured in vitro with survival factor BAFF. Distinct from previously characterized Cdc42 knockout mice, BAFF-R expression was not altered in RhoA-/- B cells. Moreover, RhoA-/- B cells appeared to be normal in proliferation and Akt and Erk activation in response to BCR crosslinking. These data suggest that RhoA is important for late B cell development through regulation of differentiation but not cell survival or proliferation. Finally, deletion of RhoA from hematopoietic stem cells did not affect common lymphoid progenitor production, indicating that RhoA is not required for early lymphoid progenitor commitment. Taken together, these lineage-specific mouse genetic studies demonstrate that RhoA critically regulates T and B cell development by distinct cellular mechanisms at multiple stages of lymphopoiesis. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 2740-2740
Author(s):  
Kerstin Wennhold ◽  
Nela Klein-Gonzalez ◽  
Michael von Bergwelt-Baildon ◽  
Alexander Shimabukuro-Vornhagen

Abstract In recent years, there has been a growing interest in the use of B cells for cellular immunotherapy, since B cell-based cancer vaccines have yielded promising results in preclinical animal models. Contrary to dendritic cells (DCs), we know little about the migration behavior of B cells in vivo. Therefore, we investigated the interactions between CD40-activated (CD40) B cells and cytotoxic T cells in vitro and the migration behavior of CD40B cells in vivo. The dynamic interactions of human antigen-presenting cells and antigen-specific T cells were observed by time-lapse videomicroscopy. The migratory and chemoattractant potential of CD40B cells was analyzed by flow cytometry and standard transwell migration assays. GFP+ CD40B cells or CD40B cells isolated from Luciferase+mice were used for subsequent in vivo studies. Murine CD40B cells show similar migratory and chemotactic characteristics compared to human CD40B cells. Upon CD40-activation, B cells upregulate the important molecules involved in lymh node homing (CD62L, CCR7/CDCR4), which are functional and induce chemotaxis of T cells in vitro. Striking differences were observed for interactions of human CD40B cells or DCs with T cells. Antigen-loaded CD40B cells differ from immature and mature DCs by displaying a rapid migratory pattern undergoing highly dynamic, short-lived (7.5 min) and sequential interactions with cognate T cells. In vivo, CD40B cells migrate to the spleen and the lymph nodes, where they enrich in the B cell zone before traveling to B cell/ T cell boundary close to the T cell zone. CD40B cell interactions with T cells are dynamic and short-lived and thereby differ from DCs. Taken together, the migration behavior of CD40B cells and their interaction with T cells underline their potential as cellular adjuvant for cancer immunotherapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4507-4507 ◽  
Author(s):  
L. Laura Sun ◽  
Xiaocheng Chen ◽  
Yvonne Chen ◽  
Mark S. Dennis ◽  
Diego Ellerman ◽  
...  

Abstract T-cell recruiting bispecific antibodies and antibody fragments have been used to harness the cytotoxic potential of T cells for cancer treatment. As an example, encouraging clinical responses have been reported with the B cell targeting Blinatumomab, a 55-kDa fusion protein composed of two single-chain antibody fragments (scFvs). However, the therapeutic promise of many reported bispecific antibodies and fragments is often limited by unfavorable pharmacokinetics and administration schedule, immunogenicity, and a propensity towards aggregation. We have adopted a knobs-into-holes (KIH) antibody format and produced T-cell dependent bispecific antibodies (TDB), which allow one arm to target various B cell antigens while the other arm recruits T cells by binding to the CD3e subunit of the T-cell receptor. These B cell targeting TDBs are full length, humanized IgG1 antibodies with natural antibody architecture. Single dose pharmacokinetic/pharmacodynamic studies in cynomolgus monkeys show the KIH format TDBs are well tolerated in life, result in potent B cell depletion in peripheral and lymphoid tissue, and demonstrate pharmacokinetic properties resembling conventional antibody therapy. One B cell antigen targeted is CD79b, a component of the B cell receptor complex. CD79b is restricted to B cells, is highly prevalent on B cell leukemia and lymphomas, and has been clinically validated by an anti-CD79b antibody-drug conjugate as a safe and effective therapeutic target for B cell malignancies (ASCO 2014 abstract#8519). In our present work, we show that anti-CD79b/CD3 TDB can be produced and purified from E.coli, free of homodimer and aggregates. Anti-CD79b/CD3 TDB is a conditional agonist, activating CD3+T cells only in the presence of CD79b expressing B cells. In vitro, it induces potent B cell killing in a T-cell dependent manner, and is broadly active against lymphoma cell lines with a wide range of CD79b antigen levels. Compared to bispecific antibodies targeting some other B cell antigens, anti-CD79b/CD3 TDB appears to be more potent in autologous B cell killing assays with human PBMCs isolated from healthy donors. Taking advantage of antibodies with a range of binding affinities, we show that the B cell cytotoxic potency of anti-CD79b/CD3 TDB can be enhanced with increased binding affinity of either the anti-CD79b arm or the anti-CD3 arm in vitro. To assess the therapeutic potential of anti-CD79b/CD3 TDB, we further demonstrate that it is active in killing B lymphoma cells isolated from leukemia and lymphoma patients. Collectively, these preclinical data suggest anti-CD79b/CD3 TDB may be a promising agent for clinical development in B cell malignancies. Disclosures Sun: Genentech: Employment. Chen:Genentech: Employment. Chen:Genentech: Employment. Dennis:Genentech: Employment. Ellerman:Genentech: Employment. Johnson:Genentech: Employment. Mathieu:Genentech: Employment. Oldendorp:Genentech: Employment. Polson:Genentech: Employment. Reyes:Genentech: Employment. Stefanich:Genentech: Employment. Wang:Genentech: Employment. Wang:Genentech: Employment. Zheng:Genentech: Employment. Ebens:Genentech: Employment.


Sign in / Sign up

Export Citation Format

Share Document