scholarly journals Negative selection of human germinal center B cells by prolonged BCR cross-linking.

1996 ◽  
Vol 183 (5) ◽  
pp. 2075-2085 ◽  
Author(s):  
L Galibert ◽  
N Burdin ◽  
C Barthélémy ◽  
G Meffre ◽  
I Durand ◽  
...  

The antigen receptors on T and B lymphocytes can transduce both agonist and antagonist signals leading either to activation/survival or anergy/death. The outcome of B lymphocyte antigen receptor (BCR) triggering depends upon multiple parameters which include (a) antigen concentration and valency, (b) duration of BCR occupancy, (c) receptor affinity, and (d) B cell differentiation stages. Herein, using anti-immunoglobulin kappa and lambda light chain antibodies, we analyzed the response of human naive, germinal center (GC) or memory B cells to BCR cross-linking regardless of heavy chain Ig isotype or intrinsic BCR specificity. We show that after CD40-activation, anti-BCR (kappa + gamma) can elicit an intracellular calcium flux on both GC and non-GC cells. However, prolonged BCR cross-linking induces death of CD40-activated GC B cells but enhances proliferation of naive or memory cells. Anti-kappa antibody only kills kappa + GC B cells without affecting surrounding gamma + GC B cells, thus demonstrating that BCR-mediated killing of GC B lymphocytes is a direct effect that does not involve a paracrine mechanism. BCR-mediated killing of CD40-activated GC B cells could be partially antagonized by the addition of IL-4. Moreover, in the presence of IL-4, prestimulation through CD40 could prevent subsequent anti-Ig-mediated cell death, suggesting a specific role of this combination in selection of GC B cells. This report provides evidence that in human, susceptibility to BCR killing is regulated along peripheral B cell differentiation pathway.

Blood ◽  
2001 ◽  
Vol 97 (6) ◽  
pp. 1796-1802 ◽  
Author(s):  
Liliana Guedez ◽  
Adnan Mansoor ◽  
Bente Birkedal-Hansen ◽  
Megan S. Lim ◽  
Paula Fukushima ◽  
...  

Tissue inhibitors of metalloproteinases (TIMPs), first described as specific inhibitors of matrix metalloproteinases, have recently been shown to exert growth factor activities. It was previously demonstrated that TIMP-1 inhibits apoptosis in germinal center B cells and induces further differentiation. Interleukin-10 (IL-10) is reported as a vital factor for the differentiation and survival of germinal center B cells and is also a negative prognostic factor in non-Hodgkin lymphoma (NHL). However, the mechanism of IL-10 activity in B cells and the regulation of its expression are not well understood. IL-10 has been shown to up-regulate TIMP-1 in tissue macrophages, monocytes, and prostate cancer cell lines, but IL-10 modulation of TIMP-1 in B cells and the effect of TIMP-1 on IL-10 expression has not been previously studied. It was found that TIMP-1 expression regulates IL-10 levels in B cells and that TIMP-1 mediates specific B-cell differentiation steps. TIMP-1 inhibition of apoptosis is not IL-10 dependent. TIMP-1 expression in B-cell NHL correlates closely with IL-10 expression and with high histologic grade. Thus, TIMP-1 regulates IL-10 expression in B-cell NHL and, through the inhibition of apoptosis, appears responsible for the negative prognosis associated with IL-10 expression in these tumors.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3853-3853
Author(s):  
Jianhong Lin ◽  
Tint Lwin ◽  
Wayne Tam ◽  
Jian-Jun Zhao ◽  
Luis Crespo ◽  
...  

Abstract Abstract 3853 B-cell differentiation is tightly regulated by synchronized suppression and/or induction of specific transcription factors. Among them, B-cell lymphoma 6 (BCL6) and PRDM1 are considered to be master regulators for germinal center formation and terminal B-cell differentiation. Dysregulation of BCL6 and PRDM1 also have been associated with lymphomagenesis. Their regulation still need further study especially at the posttranscriptional level. Here, by using co-culture system and whole genomic microRNA microarray profiling, we show for the first time that direct B lymphoma cell-stroma cell contact between follicular dendritic cells and B-lymphocytes could induce upregulation of miR-30 family and downregulation of miR-9 and let-7 family. In silico analysis showed that miR-30s can target genes BCL6 and miR-9/let7 can target PRDM1 with direct binding sites in 3`UTR region of their mRNAs. The microarray data can be proved by microRNA specific Q-RT-PCR. Specifically, by both gain of function and loss of function studies, we functionally verified that FDCs Regulate Expression of BCL6 and PRDM1 via Cell-Cell Direct Contact induced correlated microRNA dysregulation. To further validate the direct interaction between BCL6 and miR-30, we constructed luciferase reporters containing the BCL6 3`-UTR that included miR-30 binding sites and a mutant 3`-UTR harboring mutations in the “seed pairing” sequences of the miR-30 binding site. Co-transfection of miR-30 and reporter construct into cells significantly decreased luciferase activity in wild-type but not in mutant BCL6-3`-UTR transfected cells, supporting the role of miR-30 family in the regulation of BCL6 expression. BCL6 and PRDM1 and their regulation miRNAs, let-7 and miR-30, also can be validated in primary normal B-lymphocytes and lymphoma cells by using our co-culture system. Dysregulation of BCL6 and PRDM1 is often associated with lymphomagenesis. We firstly identified that BCL6 is the direct target of miR-30 family and also verified PRDM1 is the target of miR-9, and let-7 in our system. Our studies provide a novel mechanism of post-transcriptional regulation of BCL6 and PRDM1 by several microRNAs. In the context of micro-environment, it provides a clue for germinal center B-cell differentiation as well as B-cell lymphomas progression regulated by lymphocyte cell-stroma cell contact through microRNAs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 705-705
Author(s):  
Jenny Zhang ◽  
Dereje D. Jima ◽  
Cassandra L. Jacobs ◽  
Eva Gottwein ◽  
Grace Huang ◽  
...  

Abstract Background: Mature B cell differentiation provides an important mechanism for the acquisition of adaptive immunity. Malignancies derived from mature B cells are common and constitute the majority of leukemias and lymphomas. MicroRNAs are known to play a role in oncogenesis, lineage-selection, and immune cell function, including early B cell differentiation. However, the full extent and function of microRNA expression during mature B cell differentiation and in B cell malignancies are not known. Methods: From normal young patients undergoing tonsillectomies, we sorted the mature B cell subsets (naive, germinal center, memory and plasma) using FACS, based on their expression of CD19, CD38, IgD and CD27. These sorted B cells were profiled for microRNA expression using a highly sensitive multiplexed real-time PCR assay, as well as for gene expression at the whole genome level using Affymetrix U133plus microarrays. miRNA targets can be predicted based on seed sequence matching of their 2–8 nt to the 3′UTR of gene transcripts. For each B cell stage, we experimentally validated microRNA regulation of predicted target genes of interest, LMO2, MYBL1 and PRDM1, by microRNA over-expression experiments and luciferase assays. Results: We found that microRNAs have a characteristic expression pattern that defines each mature B cell stage. Examination of both microRNA and mRNA expression showed that in each B cell population, the target genes predicted based on seed matching were expressed at lower levels, results that were highly significant (P<1E-10). We found that differential microRNA expression is important at every B cell stage transition, and differentially expressed microRNAs frequently target differentially expressed transcription factors. In the naive to germinal center B cell and germinal center B cell to memory cell transitions, we found that miR-223 had an inverse relationship with its predicted target genes LMO2 and MYBL1. To test this relationship predicted based on seed pairing, in Germinal Center-derived BJAB cells, we over-expressed miR-223 by introducing its precursor, and saw a subsequent knockdown of LMO2 and MYBL1 at both the mRNA and protein level. We confirmed seed sequence specificity by comparing miR-223 knockdown of luciferase reporter activity on the LMO2 3′UTR compared to its seed sequence mutant. We further found that miR-9 and miR-30 family members directly regulate PRDM1 (blimp1), a master regulator of the GC to PC transition. In U266 cells (PC-derived), introduction of miR-9 and miR-30 family precursor resulted in decreased PRDM1 protein expression, although transcript levels were not changed, consistent with previous evidence that miRNA can regulate at the post-transcriptional steps. We further profiled over 50 tumors derived from various B cell malignancies (small lymphocytic lymphoma, Burkitt lymphoma, and the molecular subsets of diffuse large B cell lymphoma) and found that these malignancies maintain the expression patterns of their respective lineage; microRNA expression profiles of normal B cells could correctly classify the lineage of these tumors in over 80% of the cases. In contrast to other malignancies, common lymphomas do not down-regulate microRNAs, but rather maintain the microRNA-expression patterns of their normal B-cell counterparts. Conclusion: Through concomitant microRNA and mRNA-profiling, we demonstrate a regulatory role for microRNAs at every stage in mature B-cell differentiation. Further, we have experimentally identified a direct role for the microRNA-regulation of key transcription factors in B-cell differentiation: LMO2, MYBL1 and PRDM1 (Blimp1). Thus, our data demonstrate that microRNAs may be important in maintaining the mature B-cell phenotype in normal and malignant B-cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2422-2422
Author(s):  
Takafumi Yokota ◽  
Kenji Oritani ◽  
Takao Sudo ◽  
Tomohiko Ishibashi ◽  
Yukiko Doi ◽  
...  

Abstract A large body of research has demonstrated that the maternal immune system is elaborately regulated during pregnancy to establish immunological tolerance to the fetus. Although our previous works have revealed that female sex hormones, particularly estrogen, play pivotal roles in suppressing maternal B-lymphopoiesis, the precise molecular mechanisms that mediate their functions are largely unknown. Because T and B lymphocytes function coordinately in the adaptive immune system, the inhibition of B-lymphopoiesis during pregnancy should be involved, at least in part, in “maternal-fetal immune tolerance.” Understanding the molecular mechanisms of tolerance would contribute to the development of new methods to inhibit immune responses after organ transplantation, such as rejection by the host or graft-versus-host diseases. The goal of our present study is to identify the molecular pathways through which estrogen exerts its suppressive effect on B-lymphopoiesis. We performed global analyses of estrogen-inducible genes in bone marrow (BM) stromal cells and identified the secreted frizzled-related protein (sFRP) family. A sFRP1-immunoglobulin G (Ig) fusion protein inhibited early differentiation of B-cells originating from BM-derived hematopoietic stem/progenitor cells (HSPC) in culture (Yokota T. et al. Journal of Immunol, 2008). Conversely, sFRP1 deficiency in vivo caused dysregulation of HSPC homeostasis in BM and aberrant increase of peripheral B lymphocytes (Renström J. et al. Cell Stem Cell, 2009). Therefore, in the present study we generated sFRP1 transgenic chimera (TC) mice that produced high levels of circulating sFRP1 after birth to examine the influence of sFRP1 on adult lymphopoiesis in vivo. Further, we generated sFRP5 TC mice using the same procedure to determine whether there were functional differences or redundancies between sFRP1 and sFRP5. The two are most closely related isoforms among the sFRP family and are known to play redundant roles during embryonic development; however, their physiological function in the immune system is largely unknown. Unexpectedly, while only subtle change was detected in the lymphoid lineage of sFRP1 TC mice, we found that the number of B cells was significantly reduced in the sFRP5 TC mice. The frequency of B cells, which normally account for approximately 50% of peripheral leukocytes of wild-type (WT) mice, was reduced to less than 20% in the sFRP5 TC mice. The suppression was likely specific to the B lineage, because overexpression of sFRP5 did not affect myeloid, T, or NK cells. Compared with WT littermates, the body size of sFRP5 TC mice was slightly, but significantly smaller. Thymocyte counts were not affected. In contrast, the number of splenocytes, particularly those of the B lineage, significantly decreased. In BM of sFRP5 TC mice, early B-cell differentiation was inhibited, resulting in the accumulation of cells whose phenotype corresponds to those of common lymphoid progenitors (CLPs). Gene array analyses of the accumulated CLPs indicated that sFRP5 affects the expression of adaptive immune system-related genes. Further, the sFRP5 overexpression was found to induce the expression of Wnt and Notch-related molecules that regulate the integrity of HSPCs. To determine the physiological involvement of sFRP5 in the inhibition of early B-cell differentiation, we exploited mice lacking sFRP5. It is noteworthy that, although the level of sFRP5 expression was minimal in steady-state BM, it was markedly induced after estrogen treatment. We injected water-soluble β-estradiol into WT or sFRP5-null mice for 4 days and evaluated their lympho-hematopoiesis 12 h after the last injection. While the highly HSPC-enriched Lineage- Sca-1+ c-kitHi Flt3- fraction of WT mice was resistant to the treatment, the same fraction of sFRP5-null mice showed a declining trend. Further, although the CLP fraction was significantly reduced in both strains, CLPs of sFRP5-null mice were more sensitive to estrogen than those of WT. We also performed gene expression analyses of WT and sFRP5-null mice after the estrogen treatment. We found that estrogen induced the expression of Hes1 in HSPCs of WT but not sFRP5-null mice. Thus, we conclude that estrogen-inducible sFRP5 blocks the differentiation of HSPCs in BM to B-lymphocytes in the presence of high levels of estrogen, at least in part by activation of the Notch pathway. Disclosures: No relevant conflicts of interest to declare.


1981 ◽  
Vol 154 (3) ◽  
pp. 737-749 ◽  
Author(s):  
A K Bhan ◽  
L M Nadler ◽  
P Stashenko ◽  
R T McCluskey ◽  
S F Schlossman

Monoclonal antibodies reactive with B cell-specific differentiation and other antigens were used to investigate stages of B cell maturation in human lymphoid tissue, using an immunoperoxidase technique on frozen tissue sections. Lymphoid follicles, which represent the major anatomic compartment of B cells, demonstrated cellular antigenic expressions that appear to reflect differentiation of B cells. The majority of cells in the primary follicles and the mantle zones of secondary follicles expressed surface antigens similar to those of circulating B cells, namely IgM, IgD, Ia, B1, and B2. In contrast, the germinal center cells of secondary follicles stained for IgM, IgG, B1, B2, and Ia antigens, but not for IgD, and furthermore, acquired the T10 antigen. The germinal centers stained much more intensely than mantle zones with anti-B2, whereas no such striking difference in the staining intensity was observed with anti B1. Plasma cells, which represent the end stage of B cell differentiation, showed intense cytoplasmic staining with the anti-T10 antibody. The results indicate that the generation of germinal center cells in primary lymphoid follicles involves phenotype changes that correspond largely to those previously observed after both antigenic and mitogenic activation of B lymphocytes.


1979 ◽  
Vol 150 (4) ◽  
pp. 792-807 ◽  
Author(s):  
H Kubagawa ◽  
L B Vogler ◽  
J D Capra ◽  
M E Conrad ◽  
A R Lawton ◽  
...  

IgA myeloma proteins of kappa- and lambda-types were isolated from two patients. These were used to produce and purify anti-idiotype antibodies of both broad (myeloma-related) and narrow (individual myeloma) specificities. The anti-idiotype antibodies were conjugated with fluorochromes and used as immunofluorescent probes to trace in the patients clonal expansion at different levels of B-cell differentiation. Our results (a) confirm that B lymphocyte precursors in IgA plasma-cell myelomas are involved in the malignant process, (b) show that B lymphocytes of the malignant clone include those expressing each of the major heavy-chain isotypes, mu, delta, gamma, and alpha, and (c) provide strong circumstantial evidence that pre-B-cell members of the malignant clone are also increased in frequency. T cells expressing idiotypic determinants were not detected. These findings argue that the initial oncogenic event may occur in a B-stem cell and is not influenced through stimulation by antigen. An interesting association was the increased frequency of related clones of B lymphocytes as detected by their reactivity with anti-idiotype antibodies of broad specificity. Neither plasma cell nor pre-B-cell members of these related clones were increased in frequency. Anti-idiotype antibodies or helper T cells reactive with myeloma-related idiotypes could be responsible for this phenomenon. We discuss other implications of these findings and speculate that all of the various phenotypes of B-lineage malignancies may result from oncogenic processes affecting stem cell targets.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4588-4588
Author(s):  
Jianhong Lin ◽  
Tint Lwin ◽  
Jianjun Zhao ◽  
Jie Zhao ◽  
Luis Crespo ◽  
...  

Abstract Abstract 4588 B-cell differentiation process is tightly regulated by suppression or induction of specific transcription factors. Among various transcriptional regulators, BCL6 and PRDM-1 are master regulators for germinal center (GC) formation and terminal B-cell differentiation. Dysregulation of BCL6 and PRDM-1 have been associated with lymphomagenesis. However how these transcription factors are regulated and what determines their expression are unclear. Given that follicular dendritic cells (FDC) closely interact with B cells within the GC, provide survival signal to protect B cells from apoptosis and are essential for the differentiation of GC B cells, we used an in vitro FDC-B-cell co-culture model to explore the role of FDC-B cell interaction and FDC-induced miRNA in the regulation of BCL6 and PRDM-1 expression. In this study 1) we revealed that follicular dendritic cells (FDCs, HK) regulate expression of transcription factor (BCL6, and PRDM1) via cell-cell contact, 2) we showed that FDCs regulate expression of B-cell survival and differentiation-related microRNAs, 3) we demonstrated that microRNAs regulate expression of transcription factors BCl6 and PRDM1 and 4) we documented that follicular dendritic cells regulate expression of transcription factor (BCL6, and PRDM1) through microRNAs and plays an important role in B-differentiation. These studies establish new molecular mechanisms for regulation of BCL6 and PRDM-1. FDC-induce miRNA mediated down- and up-regulation of transcriptional factors may contribute to the phenotype maintenance of GC, and pathogenesis of non-Hodgkin's lymphoma (NHL) by interfering with normal B-cell terminal differentiation. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 93 (8) ◽  
Author(s):  
Eric J. Darrah ◽  
Christopher N. Jondle ◽  
Kaitlin E. Johnson ◽  
Gang Xin ◽  
Philip T. Lange ◽  
...  

ABSTRACTGammaherpesviruses are ubiquitous pathogens that are associated with B cell lymphomas. In the early stages of chronic infection, these viruses infect naive B cells and subsequently usurp the B cell differentiation process through the germinal center response to ensure latent infection of long-lived memory B cells. A unique feature of early gammaherpesvirus chronic infection is a robust differentiation of irrelevant, virus-nonspecific B cells with reactivities against self-antigens and antigens of other species. In contrast, protective, virus-specific humoral responses do not reach peak levels until a much later time. While several host factors are known to either promote or selectively restrict gammaherpesvirus-driven germinal center response, viral mechanisms that contribute to the irrelevant B cell response have not been defined. In this report we show that the expression and the enzymatic activity of the gammaherpesvirus-encoded conserved protein kinase selectively facilitates the irrelevant, but not virus-specific, B cell responses. Further, we show that lack of interleukin-1 (IL-1) receptor attenuates gammaherpesvirus-driven B cell differentiation and viral reactivation. Because germinal center B cells are thought to be the target of malignant transformation during gammaherpesvirus-driven lymphomagenesis, identification of host and viral factors that promote germinal center responses during gammaherpesvirus infection may offer an insight into the mechanism of gammaherpesvirus pathogenesis.IMPORTANCEGammaherpesviruses are ubiquitous cancer-associated pathogens that usurp the B cell differentiation process to establish life-long latent infection in memory B cells. A unique feature of early gammaherpesvirus infection is the robust increase in differentiation of B cells that are not specific for viral antigens and instead encode antibodies that react with self-antigens and antigens of other species. Viral mechanisms that are involved in driving such irrelevant B cell differentiation are not known. Here, we show that gammaherpesvirus-encoded conserved protein kinase and host IL-1 signaling promote irrelevant B cell responses and gammaherpesvirus-driven germinal center responses, with the latter thought to be the target of viral transformation.


2002 ◽  
Vol 195 (8) ◽  
pp. 1063-1069 ◽  
Author(s):  
Kim S. Glazier ◽  
Sandra B. Hake ◽  
Helen M. Tobin ◽  
Amy Chadburn ◽  
Elaine J. Schattner ◽  
...  

Peptide acquisition by MHC class II molecules is catalyzed by HLA-DM (DM). In B cells, HLA-DO (DO) inhibits or modifies the peptide exchange activity of DM. We show here that DO protein levels are modulated during B cell differentiation. Remarkably, germinal center (GC) B cells, which have low levels of DO relative to naive and memory B cells, are shown to have enhanced antigen presentation capabilities. DM protein levels also were somewhat reduced in GC B cells; however, the ratio of DM to DO in GC B cells was substantially increased, resulting in more free DM in GC B cells. We conclude that modulation of DM and DO in distinct stages of B cell differentiation represents a mechanism by which B cells regulate their capacity to function as antigen-presenting cells. Efficient antigen presentation in GC B cells would promote GC B cell–T cell interactions that are essential for B cells to survive positive selection in the GC.


Sign in / Sign up

Export Citation Format

Share Document