scholarly journals Telomere Length, Telomerase Activity, and Replicative Potential in HIV Infection: Analysis of CD4+ and CD8+T Cells from HIV-discordant Monozygotic Twins

1997 ◽  
Vol 185 (7) ◽  
pp. 1381-1386 ◽  
Author(s):  
Larry D. Palmer ◽  
Nan-ping Weng ◽  
Bruce L. Levine ◽  
Carl H. June ◽  
H. Clifford Lane ◽  
...  

To address the possible role of replicative senescence in human immunodeficiency virus (HIV) infection, telomere length, telomerase activity, and in vitro replicative capacity were assessed in peripheral blood T cells from HIV+ and HIV− donors. Genetic and age-specific effects on these parameters were controlled by studying HIV-discordant pairs of monozygotic twins. Telomere terminal restriction fragment (TRF) lengths from CD4+ T cells of HIV+ donors were significantly greater than those from HIV− twins. In contrast, telomere lengths in CD8+ T cells from HIV+ donors were shorter than in HIV− donors. The in vitro replicative capacity of CD4+ cells from HIV+ donors was equivalent to that of HIV− donors in response to stimulation through T cell receptor CD3 and CD28. Little or no telomerase activity was detected in freshly isolated CD4+ or CD8+ lymphocytes from HIV+ or HIV− donors, but was induced by in vitro stimulation of both HIV+ and HIV− donor cells. These results suggest that HIV infection is associated with alterations in the population dynamics of both CD4+ and CD8+ T cells, but fail to provide evidence for clonal exhaustion or replicative senescence as a mechanism underlying the decline in CD4+ T cells of HIV-infected donors.

1999 ◽  
Vol 92 (1) ◽  
pp. 14-24 ◽  
Author(s):  
Sumesh Kaushal ◽  
Alan L. Landay ◽  
Michael M. Lederman ◽  
Elizabeth Connick ◽  
John Spritzler ◽  
...  

2017 ◽  
Vol 63 (1) ◽  
pp. 13-26 ◽  
Author(s):  
D.D. Zhdanov ◽  
D.A. Vasina ◽  
E.V. Orlova ◽  
V.S. Orlova ◽  
V.S. Pokrovsky ◽  
...  

Alternative splicing of telomerase catalytic subunit hTERT pre-mRNA (human Telomerase Reverse Transcriptase) regulates telomerase activity. Increased expression of non-active splice variant hTERT results in inhibition of telomerase. Apoptotic endonuclease EndoG is known to participate in hTERT alternative splicing. Expression of EndoG can be induced in response to DNA damages. The aim of this study was to determine the ability of a DNA-damaging compound, cisplatin, to induce EndoG and its influence on alternative splicing of hTERT and telomerase activity in human CD4+ Т lymphocytes. Overexpression of EndoG in CD4+ T cells downregulated the expression of active full-length hTERT variant and upregulated its non-active spliced variant. Reduction of full-length hTERT caused downregulation of telomerase activity, shortening of telomeres length during cell divisions, converting cells to the replicative senescence state, activation of apoptosis and finally cell death. Few cells survived and underwent malignant transformation. Transformed cells have increased telomerase activity and proliferative potential compare to initial CD4+ T cells. These cells have phenotype of T lymphoblastic leukemic cells and are able to form tumors and cause death in experimental mice.


2017 ◽  
Vol 3 (2) ◽  
pp. 28
Author(s):  
Desie Dwi Wisudanti

Kefir is a functional foodstuff of probiotics, made from fermented milk with kefir grains containing various types of beneficial bacteria and yeast. There have been many studies on the effects of oral kefir on the immune system, but few studies have shown the effect of bioactive components from kefir (peptides and exopolysaccharides/ kefiran), on immune responses. The purpose of this study was to prove the effect of kefir supernatant from milk goat on healthy immune volunteer response in vitro. The study was conducted on 15 healthy volunteers, then isolated PBMC from whole blood, then divided into 5 groups (K-, P1, P2, P3 and P4) before culture was done for 4 days. The harvested cells from culture were examined for the percentage of CD4+ T cells, CD8+ T cells, IFN-γ, IL-4 using flowsitometry and IL-2 levels, IL-10 using the ELISA method. The results obtained that kefir do not affect the percentage of CD4+ T cells and CD8+ T cells. The higher the concentration of kefir given, the higher levels of secreted IFN- γ and IL-4, but a decrease in IL-2 levels. Significant enhancement occurred at levels of IL-10 culture PBMC given kefir with various concentrations (p <0.01), especially at concentrations of 1%. These results also show the important effects of kefir bioactive components on immune responses. The conclusion of this study is that kefir can improve the immune response, through stimulation of IL-10 secretion in vitro.


2005 ◽  
Vol 18 (2) ◽  
pp. 269-276 ◽  
Author(s):  
F. Martini ◽  
C. Agrati ◽  
G. D'Offizi ◽  
F. Poccia

Alterations in NK cell numbers and function have been repeatedly shown during HIV infection. In this study, NK cell number and MHC class I expression on CD4+ T cells were studied in HIV patients at different stages of disease progression. An increased expression of HLA-E was seen on CD4+ T cells. In parallel, a reduced number of CD94+ NK cells was observed in advanced disease stages. Moreover, a decline in CD94 expression on NK cells was observed at the HIV replication peak in patients undergoing antiretroviral treatment interruption, suggesting a role of viral replication on NK cells alterations. In vitro HIV infection induced a rapid down-regulation of HLA-A,B,C expression, paralleled by an increased expression of HLA-E surface molecules, the formal ligands of CD94 NK receptors. HIV-infected HLA-E expressing cells were able to inhibit NK cell cytotoxicity through HLA-E expression, since cytotoxicity was restored by antibody masking experiments. These data indicate that the CD94/HLA-E interaction may contribute to NK cell dysfunction in HIV infection, suggesting a role of HIV replication in this process.


Author(s):  
Fatma Dogan ◽  
Nicholas R. Forsyth

The epigenetic nature of telomeres is still controversial and different human cell lines might show diverse histone marks at telomeres. Epigenetic modifications regulate telomere length and telomerase activity that influence telomere structure and maintenance. Telomerase is responsible for telomere elongation and maintenance and is minimally composed of the catalytic protein component, telomerase reverse transcriptase (TERT) and template forming RNA component, telomerase RNA (TERC). TERT promoter mutations may underpin some telomerase activation but regulation of the gene is not completely understood due to the complex interplay of epigenetic, transcriptional, and posttranscriptional modifications. Pluripotent stem cells (PSCs) can maintain an indefinite, immortal, proliferation potential through their endogenous telomerase activity, maintenance of telomere length, and a bypass of replicative senescence in vitro. Differentiation of PSCs results in silencing of the TERT gene and an overall reversion to a mortal, somatic cell phenotype. The precise mechanisms for this controlled transcriptional silencing are complex. Promoter methylation has been suggested to be associated with epigenetic control of telomerase regulation which presents an important prospect for understanding cancer and stem cell biology. Control of down-regulation of telomerase during differentiation of PSCs provides a convenient model for the study of its endogenous regulation. Telomerase reactivation has the potential to reverse tissue degeneration, drive repair, and form a component of future tissue engineering strategies. Taken together it becomes clear that PSCs provide a unique system to understand telomerase regulation fully and drive this knowledge forward into aging and therapeutic application.


2020 ◽  
Vol 69 (1) ◽  
pp. 28-40 ◽  
Author(s):  
Ross Cromarty ◽  
Alexander Sigal ◽  
Lenine Julie Liebenberg ◽  
Lyle Robert Mckinnon ◽  
Salim Safurdeen Abdool Karim ◽  
...  

Genital inflammation is an established risk factor for increased HIV acquisition risk. Certain HIV-exposed seronegative populations, who are naturally resistant to HIV infection, have an immune quiescent phenotype defined by reduced immune activation and inflammatory cytokines at the genital tract. Therefore, the aim of this study was to create an immune quiescent environment using immunomodulatory drugs to mitigate HIV infection. Using an in vitro peripheral blood mononuclear cell (PBMC) model, we found that inflammation was induced using phytohemagglutinin and Toll-like receptor (TLR) agonists Pam3CSK4 (TLR1/2), lipopolysaccharide (LPS) (TLR4) and R848 (TLR7/8). After treatment with anti-inflammatory drugs, ibuprofen (IBF) and betamethasone (BMS), PBMCs were exposed to HIV NL4-3 AD8. Multiplexed ELISA was used to measure 28 cytokines to assess inflammation. Flow cytometry was used to measure immune activation (CD38, HLA-DR and CCR5) and HIV infection (p24 production) of CD4+ T cells. BMS potently suppressed inflammation (soluble cytokines, p<0.05) and immune activation (CD4+ T cells, p<0.05). BMS significantly reduced HIV infection of CD4+ T cells only in the LPS (0.98%) and unstimulated (1.7%) conditions (p<0.02). In contrast, IBF had minimal anti-inflammatory and immunosuppressive but no anti-HIV effects. BMS demonstrated potent anti-inflammatory effects, regardless of stimulation condition. Despite uniform immunosuppression, BMS differentially affected HIV infection according to the stimulation conditions, highlighting the complex nature of these interactions. Together, these data underscore the importance of interrogating inflammatory signaling pathways to identify novel drug targets to mitigate HIV infection.


Author(s):  
Maud Wilhelm ◽  
Amandeep Kaur ◽  
Marion Wernli ◽  
Hans H Hirsch

Abstract Background BK polyomavirus (BKPyV) remains a significant cause of premature kidney transplant failure. In the absence of effective antivirals, current treatments rely on reducing immunosuppression to regain immune control over BKPyV replication. Increasing BKPyV-specific CD8 T cells correlate with clearance of BKPyV DNAemia in kidney transplant patients. We characterized a novel approach for expanding BKPyV-specific CD8 T cells in vitro using 27mer-long synthetic BKPyV peptides, different types of antigen-presenting cells, and CD4 T cells. Methods Langerhans cells and immature or mature monocyte-derived dendritic cells (Mo-DCs) were generated from peripheral blood mononuclear cells of healthy blood donors, pulsed with synthetic peptide pools consisting of 36 overlapping 27mers (27mP) or 180 15mers (15mP). BKPyV-specific CD8 T-cell responses were assessed by cytokine release assays using 15mP or immunodominant 9mers. Results BKPyV-specific CD8 T cells expanded using 27mP and required mature Mo-DCs (P = .0312) and CD4 T cells (P = .0156) for highest responses. The resulting BKPyV-specific CD8 T cells proliferated, secreted multiple cytokines including interferon γ and tumor necrosis factor α, and were functional (CD107a+/PD1–) and cytotoxic. Conclusions Synthetic 27mP permit expanding BKPyV-specific CD8 T-cell responses when pulsing mature Mo-DCs in presence of CD4 T cells, suggesting novel and safe approaches to vaccination and adoptive T-cell therapies for patients before and after kidney transplantation.


1990 ◽  
Vol 172 (4) ◽  
pp. 1065-1070 ◽  
Author(s):  
Y Kawabe ◽  
A Ochi

The cellular basis of the in vitro and in vivo T cell responses to Staphylococcus enterotoxin B (SEB) has been investigated. The proliferation and cytotoxicity of V beta 8.1,2+,CD4+ and CD8+ T cells were observed in in vitro response to SEB. In primary cytotoxicity assays, CD4+ T cells from control spleens were more active than their CD8+ counterparts, however, in cells derived from SEB-primed mice, CD8+ T cells were dominant in SEB-specific cytotoxicity. In vivo priming with SEB abrogated the response of V beta 8.1,2+,CD4+ T cells despite the fact that these cells exist in significant number. This SEB-specific anergy occurred only in V beta 8.1,2+,CD4+ T cells but not in CD8+ T cells. These findings indicate that the requirement for the induction of antigen-specific anergy is different between CD4+ and CD8+ T cells in post-thymic tolerance, and the existence of coanergic signals for the induction of T cell anergy is suggested.


2010 ◽  
Vol 207 (13) ◽  
pp. 2869-2881 ◽  
Author(s):  
Christof Geldmacher ◽  
Njabulo Ngwenyama ◽  
Alexandra Schuetz ◽  
Constantinos Petrovas ◽  
Klaus Reither ◽  
...  

HIV-1 infection results in the progressive loss of CD4 T cells. In this study, we address how different pathogen-specific CD4 T cells are affected by HIV infection and the cellular parameters involved. We found striking differences in the depletion rates between CD4 T cells to two common opportunistic pathogens, cytomegalovirus (CMV) and Mycobacterium tuberculosis (MTB). CMV-specific CD4 T cells persisted after HIV infection, whereas MTB-specific CD4 T cells were depleted rapidly. CMV-specific CD4 T cells expressed a mature phenotype and produced very little IL-2, but large amounts of MIP-1β. In contrast, MTB-specific CD4 T cells were less mature, and most produced IL-2 but not MIP-1β. Staphylococcal enterotoxin B–stimulated IL-2–producing cells were more susceptible to HIV infection in vitro than MIP-1β–producing cells. Moreover, IL-2 production was associated with expression of CD25, and neutralization of IL-2 completely abrogated productive HIV infection in vitro. HIV DNA was found to be most abundant in IL-2–producing cells, and least abundant in MIP-1β–producing MTB-specific CD4 T cells from HIV-infected subjects with active tuberculosis. These data support the hypothesis that differences in function affect the susceptibility of pathogen-specific CD4 T cells to HIV infection and depletion in vivo, providing a potential mechanism to explain the rapid loss of MTB-specific CD4 T cells after HIV infection.


Sign in / Sign up

Export Citation Format

Share Document