scholarly journals The effect of Kefir on The Immune Response of Healthy Volunteers In Vitro

2017 ◽  
Vol 3 (2) ◽  
pp. 28
Author(s):  
Desie Dwi Wisudanti

Kefir is a functional foodstuff of probiotics, made from fermented milk with kefir grains containing various types of beneficial bacteria and yeast. There have been many studies on the effects of oral kefir on the immune system, but few studies have shown the effect of bioactive components from kefir (peptides and exopolysaccharides/ kefiran), on immune responses. The purpose of this study was to prove the effect of kefir supernatant from milk goat on healthy immune volunteer response in vitro. The study was conducted on 15 healthy volunteers, then isolated PBMC from whole blood, then divided into 5 groups (K-, P1, P2, P3 and P4) before culture was done for 4 days. The harvested cells from culture were examined for the percentage of CD4+ T cells, CD8+ T cells, IFN-γ, IL-4 using flowsitometry and IL-2 levels, IL-10 using the ELISA method. The results obtained that kefir do not affect the percentage of CD4+ T cells and CD8+ T cells. The higher the concentration of kefir given, the higher levels of secreted IFN- γ and IL-4, but a decrease in IL-2 levels. Significant enhancement occurred at levels of IL-10 culture PBMC given kefir with various concentrations (p <0.01), especially at concentrations of 1%. These results also show the important effects of kefir bioactive components on immune responses. The conclusion of this study is that kefir can improve the immune response, through stimulation of IL-10 secretion in vitro.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 206-206 ◽  
Author(s):  
Sonja Schmucker ◽  
Mario Assenmacher ◽  
Jurgen Schmitz ◽  
Anne Richter

Abstract Adoptive transfer of virus-specific T cells is a promising therapy for the treatment of infections in immunocompromised patients. Virus-specific T cells can readily be obtained from antigen-experienced, but not naïve donors. In this study we describe a cell culture system for the in vitro generation of CMV-specific T cells from naive T cells derived from CMV-seronegative donors. We isolated naïve T cells by magnetic depletion of non-T cells, CD25+ regulatory T cells, and CD45RO+ effector and memory T cells from peripheral blood mononuclear cells (PBMC) of CMV-seronegative donors. These naïve T cells were co-cultured with autologous mature monocyte-derived DC (MoDC) loaded with a pool of overlapping peptides from the CMV protein pp65. CD3-depleted autologous PBMC were used as feeder cells and CD28 antibody, IL-2, IL-7, and IL-15 were added to the culture. Already only 9–13 days after starting the priming culture, frequencies of 0.0024% and 0.009% pp65495–503/A2-tetramer+ cells among CD8+ T cells were found for 2 HLA-A2+ blood donors. In contrast pp65495–503/A2-tetramer+ T cells were not detectable when naive T cells were cultured with unpulsed MoDC. Tetramers are suitable tools for the identification of antigen-specific T cells but are restricted to single epitopes of mainly CD8+ T cells. To analyze primed CD4+ T cells as well as CD8+ T cells having specificities other than for the peptide pp65495–503, we looked for upregulation of the activation marker CD137 after a second stimulation and found increased frequencies of CD137+ CD4+ T cells as well as CD137+ CD8+ T cells in the pp65-primed cell cultures only when restimulated with the peptide pool of pp65. Because IFN-γ is important for the control of CMV infection, we studied the capability of the in vitro primed pp65-specific CD4+ and CD8+ T cells to produce this cytokine. Restimulation of the T cells with pp65 peptide pool induced IFN-γ secretion in up to 3.9% of the CD8+ T cells and up to 3.8% of the CD4+ T cells in each of six donors tested. No specific IFN-γ production was detected after restimulation with an irrelevant IE-1 peptide pool. As expected the frequency of pp65-specific T cells in the priming cultures is low. For generation of T cell lines, we magnetically enrich pp65- specific T cells according to their IFN-γ secretion using the cytokine secretion assay technology. After further cultivation for 2 weeks the antigen-specificity of the expanded T cells was again evaluated. Only if restimulated with the pp65 peptide pool 56.6% of the CD4+ T cells showed upregulated expression of the activation marker CD154 (CD40L). Cytokine analysis of the cells revealed IFN-γ production in 40.2% of the CD4+ T cells, of which 36% co-expressed IL-2, indicating the functionality of the in vitro primed and expanded T cells. In conclusion, we established a cell culture system for in vitro priming of CMV-specific CD4+ and CD8+ T cells derived from peripheral blood of donors not infected by CMV. This should extend the application of adoptive T cell therapy to patients for whom immune donors are not available.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1654-1654
Author(s):  
Young-June Kim ◽  
Hal E. Broxmeyer

Abstract Abstract 1654 Poster Board I-680 CD8+ cytotoxic T cells are often ‘exhausted’ by programmed death-1 (PD-1) signaling, and subsequently the functions of these cells are terminated especially in a tumor environment or upon chronic HIV or HCV infection. Subsets of myeloid cells referred to as myeloid derived suppressor cells (MDSC) or regulatory dendritic cells (DCs) have been implicated in inducing exhaustion or termination of effector CD8+ T cells. To this end, we developed various myeloid-derived dendritic cell (DC) types in vitro from human CD14+ monocytes using M-CSF or GM-CSF in the presence of IL-4 with/without other cytokines, and characterized these DCs with respect to their capacity to induce PD-1 expression on and exhaustion of CD8+ T cells. We then assessed their impact on longevity of CD8+ T cells following coculture. Myeloid DCs developed in vitro with M-CSF and IL-4 for 5 days (referred to as M-DC) did not express ligand for PD-1 (PD-L1) nor did they induce PD-1 on CD8+ T cells. Thus, using M-DCs as starting cells, we sought determinant factors that could modulate M-DCs to express PD-L1 and thereby induce exhaustion of CD8+ T cells. In order to better monitor exhaustion processes, we incubated human peripheral CD8+ T cells for 5 days in the presence of IL-15, an important cytokine for maintaining viability, before coculture. M-DCs showed little impact on exhaustion or longevity of the CD8+ T cells. IL-10 converted M-DC into a distinct myeloid DC subset (referred to as M-DC/IL-10) with an ability to express PD-L1 as well as to induce PD-1 on cocultured CD8+ T cells. M-DC/IL-10 cells markedly suppressed proliferation of cocultured CD8+ T cells. M-DC/IL-10 cells were morphologically unique with many granules and filamentous structures around the cell periphery. These IL-10 effects on M-DC were completely abrogated in the presence of TNF-á. M-DC/IL-10 cells could be further differentiated into another myeloid DC subset in the presence of IFN-γ (referred to as M-DC/IL-10/IFN-γ) with an ability to express even higher levels of PD-L1 compared to M-DC/IL-10 cells. The most remarkable effect of M-DC/IL-10/IFN-γ cells on cocultured CD8+ T cells was a dramatic loss of CD8+ T cells. Light and confocal microscopic observations indicated that loss of CD8+ T cells was due to phagocytosis by M-DC/IL-10/IFN-γ cells. As IFN-γ, a type 1 cytokine which is induced in CD8+ T cells by IL-12 is essential for phagocytosis, we tested whether IL-12 treatment of CD8+ T cells could further enhance phagocytosis induced by M-DC/IL-10/IFN-γ cells. Indeed, IL-12 treatment greatly increased numbers of phagocytosed CD8+ T cells. In contrast, IL-4 treated CD8+ T cells became resistant to phagocytosis, suggesting IFN-γ producing (type1) CD8+ T cells may be primary target cells for the M-DC/IL-10 cells mediated phagocytosis. CD4+ T cells were not as susceptible as CD8+ T cells to phagocytosis. We failed to detect such phagocytic activity induced by prototype DCs generated with GM-CSF and IL-4. Phagocytic activity was not inhibited by various arginase-1 inhibitors suggesting that nitric oxide signaling may not mediate phagocytic activity. Neutralizing antibody to PD-L1 slightly but significantly lowered phagocytic activity suggesting that PD-L1/PD-1 interaction may be partially involved in this process. Myeloid DCs are thought to be immunogenic, actively inducing T cell immune responses. Our results demonstrate that myeloid DCs may play suppressive roles as well through induction of phagocytic activity, especially against IFN-γ producing CD8+ T cells. This may serve as a regulatory mechanism for type 1 CD8+ T cell immune responses in an IL-10 enriched microenvironment. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 13590-13590
Author(s):  
D. C. Corsi ◽  
C. Maccalli ◽  
M. Ciaparrone ◽  
A. F. Scinto ◽  
G. Cucchiara ◽  
...  

13590 Background: Immunotherapy (IT) in CRC has often produced discouraging results. COA-1 is a new TAA recognized by CD4+ T cells from peripheral blood (PB) of a CRC pt; its immunogenic epitope is presented on the surface of tumor cells in association with DRβ1*1301 or *0402 HLA class II molecules. Our aim is verifying whether an immune response directed against COA-1 mediated by CD4+ T cells can be isolated from PB of CRC pts. To achieve a more efficient anti-tumor response a recognition of a specific antigen by both the CD4+ and CD8+ lymphocytes should be performed; so different epitopes deriving from the processing of the same antigen should be presented to the immune system in association with both class I and class II MHC molecules. We identified a list of COA-1 derived peptides with the calculated score for the binding to HLA-A2, the more common HLA class I molecule within the Caucasian population. A failure in generating COA-1 specific T cells was observed in stage I-II CRC pts. Methods: From Jan 04 to day PB samples from 36 CRC pts (14 stage III/ 22 stage IV) have been collected and the HLA typing has been performed. Pts. expressing HLA DRbβ*0402, HLA DRβ1*1301 or HLA-A2 have been selected to collect other blood drawns and verifying whether an immune response directed against COA-1 could be isolated from their PB. Results: 4 pts were positive for the expression of DRβ1*1301 and 2 for the expression of DRβ1*0402. PB lymphocytes have been in vitro stimulated with the COA-1 derived epitopes and tumor reactivity has been verified. An immune response directed to COA-1 was detected in the PB of these 6 pts; anti-COA-1 CD4+ T cells were in vitro isolated and their cytotoxicity measured by granzyme B release. 9 pts were positive for the expression of HLA-A2 and we are stimulating the lymphocytes isolated from these pts with 6 selected COA-1 derived peptides binding the HLA-A2. We observed specific CD8+ T cells for 2 peptides in 1 pt. Conclusions: Our data identify COA-1 like an immunogenic antigen that can evoke an anti-tumor immune response CD4+ mediated in CRC; the response correlates with disease progression. Experiments are ongoing to evaluate an immune response mediated by both CD4+ and CD8+ T cells. These results will determine whether COA-1 could be used for future protocols of IT in CRC. No significant financial relationships to disclose.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1108-1108
Author(s):  
Christiane I.-U. Chen ◽  
Holden T. Maecker ◽  
Wesley H. Neal ◽  
Rhoda Falkow ◽  
Peter P. Lee

Abstract Imatinib mesylate, a selective inhibitor of the bcr/abl tyrosine kinase, has revolutionized the treatment of patients with chronic myelogenous leukemia (CML). Most CML patients in chronic phase achieve hematologic remission with imatinib, while some achieve cytogenetic remission. As imatinib is an oral agent with few side effects, it has rapidly become the first-line therapy for most CML patients. However, this therapy does not represent a cure, as patients who discontinue the drug invariably relapse. Furthermore, imatinib resistance is beginning to emerge in some patients. Hence, the need to find alternate, potentially curative, therapies for CML remains. To date, the only curative treatment for CML is allogeneic bone marrow or stem cell transplantation (ABMT). A major mechanism of the curative potential of ABMT is immunological, as evidenced by the poor clinical outcome with T cell-depleted ABMT, and the efficacy of donor lymphocyte infusions (DLI) upon relapse. We hypothesized that an effective anti-leukemia immune response may emerge in patients entering remission on imatinib which may contribute to its clinical effectiveness. If so, strategies to further enhance this anti-leukemia immune response may lead to a potential cure. To determine if CML patients in remission on imatinib develop anti-leukemia immune responses, blood and bone marrow samples from patients before and after treatment were collected and analyzed. Pre-treatment samples were utilized as sources of autologous leukemic cells to detect anti-leukemia immune responses in post-treatment samples in IFN-g ELISPOT assays. Pre-treatment samples alone, post-treatment samples alone, and when available, serial post-treatment samples mixed together served as controls. In 9 of 14 patients investigated, IFN-g release was detected in pre- and post-treatment samples together with a median response of 22 spots above background (range 10 – 56 dots, p&lt;0.01), whereas serial post-treatment samples together in 8 patients yielded results similar to background (median 5, range 5 – 20). In 6 of these patients in hematologic (or cytogenetic) remission, sufficient cells were available to allow additional analyses via intracellular staining for IFN-g, TNF-a, and IL-2 in autologous leukemia stimulated T cells (CD4 and CD8) and NK cells. In 4 of 6 patients, leukemia-reactive T cells were detected, most prominently in CD4+ T cells expressing TNF-a (1.4 – 37%), followed by IL-2 (0.3 – 12%) and IFN-g (0.1 – 4.6%). NK cells did not show significant expression of these cytokines upon stimulation with autologous leukemia cells. In pre-treatment and post-treatment samples alone, IL-2, TNF-a, and IFN-g expression was not detectable (0 – 0.5%). These results suggest that a significant portion of CML patients in remission with imatinib develop an anti-leukemia immune response, most notably in CD4+ T cells. Mechanisms by which imatinib treatment leads to anti-leukemia immune responses, and the molecular targets to which these cells are directed, will be further investigated. This knowledge will be useful in the development of immunotherapy strategies against CML as well as other leukemias, and raises the hope that immunotherapy may be combined with imatinib to eradicate residual leukemia cells for a durable cure of the disease. intracellular cytokine staining CD4+ T Cells CD8+ T Cells IL-2 IFN- γ TNF- α IL-2 IFN- γ TNF- α pt 1 0.3 0 0.8 0.1 0.1 0.5 pt 1 0.3 0.1 1.4 0.1 0.1 0.4 pt 2 2.6 0.8 10.3 2.2 2.1 6.1 pt 3 21 2 37 2.3 0.7 1.7 pt 4 12 4.6 19 6.3 1.8 5.8


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1019-1019
Author(s):  
Darina Ocadlikova ◽  
Mariangela Lecciso ◽  
Elisa Orioli ◽  
Elena De Marchi ◽  
Sabina Sangaletti ◽  
...  

Abstract BACKGROUND: Overall survival of adult acute myeloid leukemia (AML) is still poor due to the lack of novel and effective therapies. In different malignancies including AML, some chemotherapy agents, such as daunorubicin (DNR) but not cytarabine (Ara-C), activate the immune response via the cross-priming of anti-tumor T cells by dendritic cells (DCs). Such process, known as immunogenic cell death (ICD), is characterized by intracellular and pericellular modifications of tumor cells, such as the cell surface translocation of calreticulin (CRT) and heat shock proteins 70/90 (HSPs 70/90), the extracellular release of ATP and pro-inflammatory factor HMGB1. Alongside with ICD, chemotherapy is known to induce inflammatory modifications within the tumor microenvironment, which may also elicit immunosuppressive pathways. In particular, DCs may be driven to acquire tolerogenic features, which may ultimately affect anti-tumor T-cell responses. In this study, we characterize ICD in AML to evaluate the involvement of some DC-related inhibitory pathways, such as the expression of indoleamine-2,3-dioxygenase 1 (IDO1) and the activation of PD-L1/PD-1 axis. METHODS: AML patients were analyzed at diagnosis.Before and after DNR-based chemotherapy, patient-derived T cells were extensively characterized by FACS and analyzed for their capacity to produce IFN-γ in response to autologous blasts. The AML cell line HL-60 and primary AML cells were then exposed, in vitro, to different drugs, including DNR and, as control drug, Ara-C. Dying cells were tested for the surface expression of CRT and HSPs 70/90, the release of HMGB1 and ATP. Functionally, immature DCs generated from healthy donors were pulsed with DNR-treated AML cells. Then, loaded DCs were tested for the expression of maturation-associated markers and of inhibitory pathways, such as IDO1 and PD-L1 and used to stimulate autologous CD3+ T cells. After co-culture, autologous healthy donor T cells were analyzed for IFN-g production, PD-1 expression and Tregs induction. A mouse model was set up to investigate in vivo the mechanism(s) underlying ICD in AML. The murine myelomonocytic leukemia cell line WEHI was transfected with luciferase PmeLUC probe, inoculated subcutaneously into BALB/c mice and used to measure in vivo ATP release after chemotherapy. Tumor-infiltrating T cells and DCs were characterized and correlated with ATP release. RESULTS: DNR treatment induced ICD-related modifications in both AML cell lines and primary blasts, including CRT, HSP70 and HSP90 exposure on cell surface, HMGB1 release from nucleus to cytoplasm and supernatant increase of ATP. Ex vivo, T-cell monitoring of DNR-treated AML patients displayed an increase in leukemia-specific IFN-g-producing CD4+ and CD8+ T cells in 20/28 evaluated patients. However, FACS analysis of CD8+ effector T cells emerging after chemotherapy showed a significant up-regulation of exhaustion marker such as LAG3 and PD-1, which paralleled with their reduced ability to produce active effector molecules, such as perforin and granzyme. Moreover, an increase of circulating Tregs was observed after DNR-based chemotherapy. In vitro, loading of chemotherapy-treated AML cells into DCs resulted not only in the induction of a maturation phenotype, but also in over-expression of inhibitory pathways, such as IDO1 and PD-L1. The silencing of IDO1 increased the capacity of DCs loaded with DNR-treated AML cells to induce leukemia-specific IFN-γ production by CD4+ and CD8+ T cells. In vivo, DNR therapy of mice inoculated with established murine AML cell line resulted in increased ATP release. Similarly to ex vivo and in vitro results, tumor-infiltrating DCs showed an increase in maturation status. Moreover, CD4+ and CD8+ T cells had increased IFN-γ production, but showed an exhausted phenotype. CONCLUSIONS: Our data confirm that chemotherapy-induced ICD may be active in AML and results in increased leukemia-specific T-cell immune response. However, a deep, ex vivo, in vitro and in vivo characterization of chemotherapy-induced T cells demonstrated an exhausted phenotype, which may be the result of the inhibitory pathways induction in DCs, such as IDO and PD-L1. The present data suggest that combination of chemotherapy with inhibitors of IDO1 and PD-L1 may represent an interesting approach to potentiate the immunogenic effect of chemotherapy, thus resulting in increased anti-leukemia immune response. Disclosures Cavo: Janssen-Cilag, Celgene, Amgen, BMS: Honoraria.


2015 ◽  
Vol 129 (5) ◽  
pp. 395-404 ◽  
Author(s):  
Xuefen Li ◽  
Li Tian ◽  
Yuejiao Dong ◽  
Qiaoyun Zhu ◽  
Yiyin Wang ◽  
...  

Inhibitory cytokine, interleukin-35 (IL-35), is highly expressed in CD4+ T-cells from CHB patients and plays an important role in the inhibition of the cellular immune response, which contribute to the development and progression of chronic hepatitis B.


2001 ◽  
Vol 194 (8) ◽  
pp. 1069-1080 ◽  
Author(s):  
Xiaowen Wang ◽  
Tim Mosmann

The differentiation of antigen-stimulated naive CD4 T cells into T helper (Th)1 or Th2 effector cells can be prevented in vitro by transforming growth factor (TGF)-β and anti–interferon (IFN)-γ. These cells proliferate and synthesize interleukin (IL)-2 but not IFN-γ or IL-4, and can differentiate into either Th1 or Th2 cells. We have now used two-color Elispots to reveal substantial numbers of primed cells producing IL-2 but not IL-4 or IFN-γ during the Th1- or Th2-biased immune responses induced by soluble proteins or with adjuvants. These cells were CD4+CD44high and were present during immediate and long-term immune responses of normal mice. Naive T cell receptor for antigen (TCR) transgenic (DO11.10) T cells were primed in vivo after adoptive transfer into normal hosts and FACS® cloned under conditions that did not allow further differentiation. After clonal proliferation, aliquots of each clone were cultured in Th1- or Th2-inducing conditions. Many in vivo–primed cells were uncommitted, secreting IL-2 but not IL-4 or IFN-γ at the first cloning step, but secreting either IL-4 or IFN-γ after differentiation in the appropriate conditions. These in vivo-primed, uncommitted, IL-2–producing cells may constitute an expanded pool of antigen-specific cells that provide extra flexibility for immune responses by differentiating into Th1 or Th2 phenotypes later during the same or subsequent immune responses.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2197-2197
Author(s):  
Jose M. Rojas ◽  
Katy Knight ◽  
Li-Hui Wang ◽  
Richard E. Clark

Abstract Chronic myeloid leukaemia (CML) is characterised by the BCR-ABL oncoprotein. The amino-acid sequences spanning the junctional region are completely leukaemia-specific. In vitro pulsing of antigen presenting cells elicits immune response to CML cells. Vaccination of CML patients with peptides from this junctional region could therefore elicit/augment immune responses to CML cells. In our Evaluation of Peptide Immunisation in CML (EPIC) study, the patient’s entry requirements were as follows: first chronic phase of CML, expression of e14a2 (b3a2) BCR-ABL transcript, and prior treatment with imatinib daily (at least 400mg) at a stable dose for at least 6 months. Each patient received intradermally a cocktail of 3 BCR-ABL peptides: a 9-mer spanning the e14a2 region, the same 9-mer linked to PADRE (a 15-mer non-natural peptide shown to activate CD4+ T cells), and a 13-mer consensus e14a2 junctional peptide linked to PADRE. Peptides were administered at either 100 (5 patients), 300 (5 patients), 600 (5 patients), or 1000μg (4 patients) with sargramostim on 6 occasions over 2 months. Immune responses to the vaccine were monitored by IFN-γ and IL-5 ELISPOT assays on peripheral blood mononuclear cells. Molecular responses were assessed by quantitative real-time PCR of BCR-ABL mRNA. At entry no patient showed a detectable immune response to PADRE, but all 19 patients had detectable CD4+ T cells responses within 3 months of commencing vaccination. This indicated that the vaccination protocol was capable of stimulating T cell responses in all 19 patients. Immune responses to the 9-mer BCR-ABL junctional peptide used in the vaccine were detected in 11/19 patients, and demonstrated to be CD8+ T cells by cytokine analysis in flow cytometry. BCR-ABL immune responses were also assessed against a longer 18-mer peptide spanning the whole e14a2 junctional region. CD4+ T cells specific for this 18-mer peptide were detected in 14/19 patients. Interestingly, immunophenotyping indicated that these BCR-ABL-specific T cells were of a memory phenotype (CD45RO+). Serial molecular responses were available for at least 12 months on all cases. Of the 6 patients not in major cytogenic response (MCR) at baseline, molecular improvement was only observed in one case. However 12/13 patients in at least MCR at baseline had at least a 1 log fall in BCR–ABL transcripts, though this occurred several months after completing vaccination. Moreover, vaccination improved the fall in BCR–ABL transcripts in patients who had received imatinib for more than 12 months. These data show that peptide immunisation in CML can elicit anti-BCR-ABL peptide responses in CD4+ and CD8+ T cells. It also demonstrates that BCR-ABL peptide vaccination may improve control of CML, especially in patients responding well to imatinib.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1837-1837
Author(s):  
Suresh Veeramani ◽  
George J. Weiner

Abstract Background Proteins within the complement system have complex effects on cellular immune responses. In previous studies, we found that active complement components, especially C5a, can dampen the development of antigen-specific immune responses following vaccination with a model antigen, in part by promoting generation of APC-induced T regulatory (Treg) cells. These studies also demonstrated that B lymphoma cell lines exposed to complement can induce Treg generation in vitro. The current study was designed to address whether depletion of C5a could enhance development of a cellular anti-lymphoma immune response in vivo. Methods Immunocompetent Balb/C mice were inoculated subcutaneously with syngeneic A20 B lymphoma cells mixed with either 10 μg of rat anti-mouse C5a monoclonal antibody (mAb) or 10 μg of isotype-matched Rat IgG2a control mAb. Tumor growth was followed. In select experiments, mice were sacrificed and analyzed for the percentage and activity of tumor-infiltrating T cells and A20-specific splenic T cell responses. Results 1. Tumor progression. Lymphoma grew more slowly in mice treated with anti-C5a mAb compared to mice treated with control mAb (p<0.05) {Fig. 1). 2. Intratumoral T cells. Tumors from mice treated with anti-C5a mAb had higher CD8+ T cell infiltration compared to mice treated with control mAb (p=0.002) (Fig. 2). Tumor-infiltrating CD8+ T cells showed a trend towards higher intracellular IFNg production in mice treated with anti-C5a mAb compared to control mAb (p=0.051). 3. Splenic T cells. Splenic T cells from mice treated with anti-C5a mAb produced IFNg to a greater degree than did splenic T cells from control mice when splenocytes were cultured with irradiated A20 cells in vitro (p=0.041) (Fig. 3). There was a trend towards decreased numbers of splenic CD4+CD25highFoxp3+ Tregs in C5a-depleted mice compared to control mice. Conclusions Depletion of C5a at the site of tumor inoculation slows tumor growth and increases the number of tumor infiltrating CD8 T cells in a syngenic immunocompetent model of lymphoma. A trend towards enhanced production of IFNg in the tumor infiltrating T cells, increased numbers of tumor-specific splenic T cells, and reduced numbers of splenic Tregs, suggests intratumoral C5a depletion can enhance tumor-specific immune responses both within the tumor and systemically. Ongoing studies are exploring the molecular mechanisms involved in C5a-promoted tumor progression and the use of C5a depletion as a novel strategy to improve anti-tumor immunity. Disclosures: No relevant conflicts of interest to declare.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Roxane Tussiwand ◽  
Michael S. Behnke ◽  
Nicole M. Kretzer ◽  
Gary E. Grajales-Reyes ◽  
Theresa L. Murphy ◽  
...  

ABSTRACT Immunity to Toxoplasma gondii at early stages of infection in C57BL/6 mice depends on gamma interferon (IFN-γ) production by NK cells, while at later stages it is primarily mediated by CD8 T cells. We decided to explore the requirement for CD4 T cells during T. gondii infection in Batf3−/− mice, which lack CD8α+ dendritic cells (DCs) that are necessary for cross-presentation of cell-associated antigens to CD8 T cells. We show that in this immunodeficient background on a BALB/c background, CD4 T cells become important effector cells and are able to protect Batf3−/− mice from infection with the avirulent strain RHΔku80Δrop5. Independently of the initial NK cell activation, CD4 T cells in wild-type and Batf3−/− mice were the major source of IFN-γ. Importantly, memory CD4 T cells were sufficient to provide protective immunity following transfer into Batf3−/− mice and secondary challenge with the virulent RHΔku80 strain. Collectively, these results show that under situations where CD8 cell responses are impaired, CD4 T cells provide an important alternative immune response to T. gondii. IMPORTANCE Toxoplasma gondii is a widespread parasite of animals that causes zoonotic infections in humans. Although healthy individuals generally control the infection with only moderate symptoms, it causes serious illness in newborns and those with compromised immune systems such as HIV-infected AIDS patients. Because rodents are natural hosts for T. gondii, laboratory mice provide an excellent model for studying immune responses. Here, we used a combination of an attenuated mutant strain of the parasite that effectively vaccinates mice, with a defect in a transcriptional factor that impairs a critical subset of dendritic cells, to studying the immune response to infection. The findings reveal that in BALB/c mice, CD4 memory T cells play a dominant role in producing IFN-γ needed to control chronic infection. Hence, BALB/c mice may provide a more appropriate model for declining immunity seen in HIV-AIDS patients where loss of CD4 cells is associated with emergence of opportunistic infections.


Sign in / Sign up

Export Citation Format

Share Document