scholarly journals Nuclear Factor of Activated T Cells Transcription Factor Nfatp Controls Superantigen-Induced Lethal Shock

2000 ◽  
Vol 192 (4) ◽  
pp. 581-586 ◽  
Author(s):  
Alla V. Tsytsykova ◽  
Anne E. Goldfeld

Tumor necrosis factor α (TNF-α) is the key mediator of superantigen-induced T cell lethal shock. Here, we show that nuclear factor of activated T cells transcription factor, NFATp, controls susceptibility to superantigen-induced lethal shock in mice through its activation of TNF-α gene transcription. In NFATp-deficient mice, T cell stimulation leads to delayed induction and attenuation of TNF-α mRNA levels, decreased TNF-α serum levels, and resistance to superantigen-induced lethal shock. By contrast, after lipopolysaccharide (LPS) challenge, serum levels of TNF-α and susceptibility to shock are unaffected. These results demonstrate that NFATp is an essential activator of immediate early TNF-α gene expression in T cells and they present in vivo evidence of the inducer- and cell type–specific regulation of TNF-α gene expression. Furthermore, they suggest NFATp as a potential selective target in the treatment of superantigen-induced lethal shock.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1743-1743
Author(s):  
Mathew L. Lesniewski ◽  
Laura R. Fanning ◽  
Margeret Kozik ◽  
Richard P. Weitzel ◽  
Yeal Hegerfeldt ◽  
...  

Abstract Introduction: Umbilical cord blood (UCB) CD4+ T-cells have been shown to express significant levels of BACH2 transcription factor protein compared to adult blood (AB) CD4+ T-cells. Previously, NFAT1 siRNA knockdown of UCB T-cells exhibited a significantly higher BACH2 mRNA expression, and IFN-γ, TNF-α. and CTLA-4 mRNA levels were significantly suppressed. BACH2, a member of the b-Zip family, has been shown to act as a heterodimer with the bZip protein MafK, as a transcriptional inhibitor via recruitment of a histone deacetylase class II complex (HDAC II) in differentiating B-cells, and neurons. Due to observed inverse expression of BACH2 and NFAT1 in UCB CD4+ T-cells, we hypothesized that BACH2 may regulate transcription factors known to bind with NFAT1 including AP-1 proteins JunB and FosL1. We tested this by siRNA knockdown of BACH2 in primary UCB-derived CD4+ T-cells. Key developmental transcription factors JUNB, FosL1, NFAT1 and downstream IFN-γ, and TNF-α were mRNA analyzed. Methods: UCB T-cells were purified using autoMACs system (Miltenyi). After overnight culture, T-cells were transfected with BACH2 siRNA (Dharmacon) using Amaxa Nucleofector system (Amaxa Inc). Both siRNA treated and control cells were incubated in media for 18 hours, and then stimulated using anti-CD3/anti-CD28 antibodies (BD BioScience). Aliquots of cells were collected at specified time points post-stimulation for protein and total RNA isolation. The relative change in mRNA levels for BACH2, JUNB, FosL1, IFN-γ, NFAT1, and TNF-α were determined by Lightcycler SybrGreen real time RT-PCR system (Roche). siRNA knockdown of BACH2 protein in transfected UCB T-cells was confirmed by western blot. Results: Real-time RT-PCR of BACH2 siRNA treated UCB CD4+ T-cells stimulated with anti-CD3/CD28 antibodies and analyzed after 6 hrs of stimulation showed a 4 log increase in FosL1 and NFAT1 mRNA, a 3 log increase in JunB mRNA, a 5 log increase in IFN-γ as compared to stimulated control UCB T-cells. TNF-α mRNA was decreased by 5 logs in BACH2 siRNA treated UCB T-cells as compared to control. CD3/CD28 stimulated untransfected UCB T-cells were previously shown to have decrease expression of NFAT1, JunB, FosL1, IFN-γ, and TNF-α, and in UCB T-cells compared to stimulated AB T-cells. Conclusions: BACH2 expression correlates with an inhibition of expression of AP1 transcription regulatory proteins in UCB T-cells during primary CD3/CD28 stimulation. The complete activation of the T-cell requires the activation of AP1 by CD28 pathway otherwise the antigen presenting cell signals the T-cell to enter anergy. In UCB CD4+ T-cells express BACH2, which acts as a transcriptional inhibitor of two critical AP1 genes, JUNB and FosL1, which mediate the CD28 co-stimulatory pathway. These results further suggests that expression of BACH2 in UCB T-cells may contribute to lower incidence of alloreactivity observed in leukemia patients receiving UCB stem cells compared to AB bone marrow stem cells and thus leads to low GVHD, and contribute to the weak Th1 response seen in stimulated UCB T-cells by reduced amounts of AP1 protein available for activating the T-cell.


2021 ◽  
Vol 118 (35) ◽  
pp. e2025825118
Author(s):  
Michael P. Gallagher ◽  
James M. Conley ◽  
Pranitha Vangala ◽  
Manuel Garber ◽  
Andrea Reboldi ◽  
...  

The strength of peptide:MHC interactions with the T cell receptor (TCR) is correlated with the time to first cell division, the relative scale of the effector cell response, and the graded expression of activation-associated proteins like IRF4. To regulate T cell activation programming, the TCR and the TCR proximal interleukin-2–inducible T cell kinase (ITK) simultaneously trigger many biochemically separate signaling cascades. T cells lacking ITK exhibit selective impairments in effector T cell responses after activation, but under the strongest signaling conditions, ITK activity is dispensable. To gain insight into whether TCR signal strength and ITK activity tune observed graded gene expression through the unequal activation of distinct signaling pathways, we examined Erk1/2 phosphorylation or nuclear factor of activated T cells (NFAT) and nuclear factor (NF)-κB translocation in naïve OT-I CD8+ cell nuclei. We observed the consistent digital activation of NFAT1 and Erk1/2, but NF-κB displayed dynamic, graded activation in response to variation in TCR signal strength, tunable by treatment with an ITK inhibitor. Inhibitor-treated cells showed the dampened induction of AP-1 factors Fos and Fosb, NF-κB response gene transcripts, and survival factor Il2 transcripts. ATAC sequencing analysis also revealed that genomic regions most sensitive to ITK inhibition were enriched for NF-κB and AP-1 motifs. Specific inhibition of NF-κB during peptide stimulation tuned the expression of early gene products like c-Fos. Together, these data indicate a key role for ITK in orchestrating the optimal activation of separate TCR downstream pathways, specifically aiding NF-κB activation. More broadly, we revealed a mechanism by which variations in TCR signal strength can produce patterns of graded gene expression in activated T cells.


2010 ◽  
Vol 286 (2) ◽  
pp. 1025-1036 ◽  
Author(s):  
Michael C. Lawrence ◽  
Bashoo Naziruddin ◽  
Marlon F. Levy ◽  
Andrew Jackson ◽  
Kathleen McGlynn

1997 ◽  
Vol 17 (11) ◽  
pp. 6437-6447 ◽  
Author(s):  
S Martínez-Martínez ◽  
P Gómez del Arco ◽  
A L Armesilla ◽  
J Aramburu ◽  
C Luo ◽  
...  

Dithiocarbamates (DTCs) have recently been reported as powerful inhibitors of NF-kappaB activation in a number of cell types. Given the role of this transcription factor in the regulation of gene expression in the inflammatory response, NF-kappaB inhibitors have been suggested as potential therapeutic drugs for inflammatory diseases. We show here that DTCs inhibited both interleukin 2 (IL-2) synthesis and membrane expression of antigens which are induced during T-cell activation. This inhibition, which occurred with a parallel activation of c-Jun transactivating functions and expression, was reflected by transfection experiments at the IL-2 promoter level, and involved not only the inhibition of NF-kappaB-driven reporter activation but also that of nuclear factor of activated T cells (NFAT). Accordingly, electrophoretic mobility shift assays (EMSAs) indicated that pyrrolidine DTC (PDTC) prevented NF-kappaB, and NFAT DNA-binding activity in T cells stimulated with either phorbol myristate acetate plus ionophore or antibodies against the CD3-T-cell receptor complex and simultaneously activated the binding of AP-1. Furthermore, PDTC differentially targeted both NFATp and NFATc family members, inhibiting the transactivation functions of NFATp and mRNA induction of NFATc. Strikingly, Western blotting and immunocytochemical experiments indicated that PDTC promoted a transient and rapid shuttling of NFATp and NFATc, leading to their accelerated export from the nucleus of activated T cells. We propose that the activation of an NFAT kinase by PDTC could be responsible for the rapid shuttling of the NFAT, therefore transiently converting the sustained transactivation of this transcription factor that occurs during lymphocyte activation, and show that c-Jun NH2-terminal kinase (JNK) can act by directly phosphorylating NFATp. In addition, the combined inhibitory effects on NFAT and NF-KB support a potential use of DTCs as immunosuppressants.


2006 ◽  
Vol 103 (10) ◽  
pp. 3740-3745 ◽  
Author(s):  
T. So ◽  
J. Song ◽  
K. Sugie ◽  
A. Altman ◽  
M. Croft

2015 ◽  
Vol 308 (11) ◽  
pp. F1247-F1258 ◽  
Author(s):  
Daniel Kitterer ◽  
Joerg Latus ◽  
Christoph Ulmer ◽  
Peter Fritz ◽  
Dagmar Biegger ◽  
...  

Peritoneal inflammation and fibrosis are responses to the uremic milieu and exposure to hyperosmolar dialysis fluids in patients on peritoneal dialysis. Cells respond to high osmolarity via the transcription factor nuclear factor of activated T cells (NFAT5). In the present study, the response of human peritoneal fibroblasts to glucose was analyzed in vitro. Expression levels of NFAT5 and chemokine (C-C motif) ligand (CCL2) mRNA were quantified in peritoneal biopsies of five nonuremic control patients, five uremic patients before PD (pPD), and eight patients on PD (oPD) using real-time PCR. Biopsies from 5 control patients, 25 pPD patients, and 25 oPD patients were investigated using immunohistochemistry to detect the expression of NFAT5, CCL2, NF-κB p50, NF-κB p65, and CD68. High glucose concentrations led to an early, dose-dependent induction of NFAT5 mRNA in human peritoneal fibroblasts. CCL2 mRNA expression was upregulated by high concentrations of glucose after 6 h, but, most notably, a concentration-dependent induction of CCL2 was present after 96 h. In human peritoneal biopsies, NFAT5 mRNA levels were increased in uremic patients compared with nonuremic control patients. No significant difference was found between the pPD group and oPD group. CCL2 mRNA expression was higher in the oPD group. Immunohistochemistry analysis was consistent with the results of mRNA analysis. CD68-positive cells were significantly increased in the oPD group. In conclusion, uremia results in NFAT5 induction, which might promote early changes of the peritoneum. Upregulation of NFAT5 in PD patients is associated with NFκB induction, potentially resulting in the recruitment of macrophages.


Diabetes ◽  
2006 ◽  
Vol 55 (5) ◽  
pp. 1450-1455 ◽  
Author(s):  
B. Yang ◽  
A. D. Hodgkinson ◽  
P. J. Oates ◽  
H. M. Kwon ◽  
B. A. Millward ◽  
...  

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 260 ◽  
Author(s):  
Martin Vaeth ◽  
Stefan Feske

Nuclear factor of activated T cells (NFAT) was first described almost three decades ago as a Ca2+/calcineurin-regulated transcription factor in T cells. Since then, a large body of research uncovered the regulation and physiological function of different NFAT homologues in the immune system and many other tissues. In this review, we will discuss novel roles of NFAT in T cells, focusing mainly on its function in humoral immune responses, immunological tolerance, and the regulation of immune metabolism.


Sign in / Sign up

Export Citation Format

Share Document