scholarly journals Contact-dependent Stimulation and Inhibition of Dendritic Cells by Natural Killer Cells

2002 ◽  
Vol 195 (3) ◽  
pp. 335-341 ◽  
Author(s):  
Diego Piccioli ◽  
Silverio Sbrana ◽  
Emiliano Melandri ◽  
Nicholas M. Valiante

Natural killer (NK) cells and dendritic cells (DCs) are two distinct cell types of innate immunity. It is known that the in vitro interaction of human NK cells with autologous DCs results in DC lysis. Here we show that contact-dependent interactions between activated human NK cells and immature DCs (iDCs) provides a “control switch” for the immune system. At low NK/DC ratios, this interaction dramatically amplifies DC responses, whereas at high ratios it completely turns off their responses. Specifically, culture of activated human NK cells with iDCs, at low NK/DC ratios (1:5), led to exponential increases in DC cytokine production, which were completely dependent on cell-to-cell contact. DC maturation was also driven by cognate interactions with NK cells and maturation was dependent on endogenously produced TNF-α in the culture. At slightly higher NK/DC ratios (5:1), inhibition of DC functions was the dominant feature due to potent killing by the autologous NK cells. Resting NK cells also stimulated autologous DC maturation in a TNF-α/contact-dependent manner, however, increasing the NK/DC ratio only led to an enhancement of this effect.

Blood ◽  
2005 ◽  
Vol 106 (7) ◽  
pp. 2252-2258 ◽  
Author(s):  
Thierry Walzer ◽  
Marc Dalod ◽  
Scott H. Robbins ◽  
Laurence Zitvogel ◽  
Eric Vivier

AbstractSeveral recent publications have focused on the newly described interactions between natural-killer (NK) cells and dendritic cells (DCs). Activated NK cells induce DC maturation either directly or in synergy with suboptimal levels of microbial signals. Immature DCs appear susceptible to autologous NK-cell-mediated cytolysis while mature DCs are protected. NK-cell-induced DC activation is dependent on both tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ) secretion and a cell-cell contact involving NKp30. In vitro, interleukin-12 (IL-12)/IL-18, IL-15, and IFN-α/β production by activated DCs enhance, in turn, NK-cell IFN-γ production, proliferation, and cytotoxic potential, respectively. In vivo, NK-cell/DC interactions may occur in lymphoid organs as well as in nonlymphoid tissues, and their consequences are multiple. By inducing DC activation, NK-cell activation induced by tumor cells can indirectly promote antitumoral T-cell responses. Reciprocally, DCs activated through Toll-like receptors (TLRs) induce potent NK-cell activation in antiviral responses. Thus, DCs and NK cells are equipped with complementary sets of receptors that allow the recognition of various pathogenic agents, emphasizing the role of NK-cell/DC crosstalk in the coordination of innate and adaptive immune responses.


2002 ◽  
Vol 195 (3) ◽  
pp. 327-333 ◽  
Author(s):  
Franca Gerosa ◽  
Barbara Baldani-Guerra ◽  
Carla Nisii ◽  
Viviana Marchesini ◽  
Giuseppe Carra ◽  
...  

We analyzed the interaction between human peripheral blood natural killer (NK) cells and monocyte-derived immature dendritic cells (DC). Fresh NK cells were activated, as indicated by the induced expression of the CD69 antigen, and their cytolytic activity was strongly augmented by contact with lipopolysaccharide (LPS)-treated mature DC, or with immature DC in the presence of the maturation stimuli LPS, Mycobacterium tuberculosis or interferon (IFN)-α. Reciprocally, fresh NK cells cultured with immature DC in the presence of the maturation stimuli strongly enhanced DC maturation and interleukin (IL)-12 production. IL-2–activated NK cells directly induced maturation of DC and enhanced their ability to stimulate allogeneic naive CD4+ T cells. The effects of NK cells were cell contact dependent, although the secretion of IFN-γ and TNF also contributed to DC maturation. Within peripheral blood lymphocytes the reciprocal activating interaction with DC was restricted to NK cells, because the other lymphocyte subsets were neither induced to express CD69, nor induced to mature in contact with DC. These data demonstrated for the first time a bidirectional cross talk between NK cells and DC, in which NK cells activated by IL-2 or by mature DC induce DC maturation.


2007 ◽  
Vol 204 (12) ◽  
pp. 3027-3036 ◽  
Author(s):  
Galit Alter ◽  
Maureen P. Martin ◽  
Nickolas Teigen ◽  
William H. Carr ◽  
Todd J. Suscovich ◽  
...  

Decline of peak viremia during acute HIV-1 infection occurs before the development of vigorous adaptive immunity, and the level of decline correlates inversely with the rate of AIDS progression, implicating a potential role for the innate immune response in determining disease outcome. The combined expression of an activating natural killer (NK) cell receptor, the killer immunoglobulin-like receptor (KIR) 3DS1, and its presumed ligand, human leukocyte antigen (HLA)–B Bw4-80I, has been associated in epidemiological studies with a slow progression to AIDS. We examined the functional ability of NK cells to differentially control HIV-1 replication in vitro based on their KIR and HLA types. NK cells expressing KIR3DS1 showed strong, significant dose- and cell contact–dependent inhibition of HIV-1 replication in target cells expressing HLA-B Bw4-80I compared with NK cells that did not express KIR3DS1. Furthermore, KIR3DS1+ NK cells and NKLs were preferentially activated, and lysed HIV-1 infected target cells in an HLA-B Bw4-80I–dependent manner. These data provide the first functional evidence that variation at the KIR locus influences the effectiveness of NK cell activity in the containment of viral replication.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1550-1550
Author(s):  
Gerard M.J. Bos ◽  
Janine CHMJ Van Elssen ◽  
Joris Vanderlocht ◽  
Brigitte LMG Senden-Gijsbers ◽  
Wilfred LMG Germeraad

Abstract Figure Figure Besides their prominent role in the destruction of altered self-cells, natural killer (NK) cells have been shown to potentiate T cell responses by interacting with dendritic cells (DC). In mouse models as well as in a recent human study it has been demonstrated that DC might activate NK cells. In the context of dendritic cell-based vaccines – i.e. optimising the optimal maturation cocktail - it remains to be determined if and how NK-DC interactions depend on differential DC maturation and what factors influence the NK activation.. By comparing differential DC differentiation (IL-4/GM-CSF and IL-13/GMCSF) and maturation cocktails (IFN-γ/FMKp and PGE2/TNF-α), we show that the ability of human DCs to attract NK cells is imprinted during DC maturation. Only FMKP/IFN-γ (stimulation Toll like receptor 2 and 4) maturated DCs have the capacity to actively recruit NK cells in vitro and our data indicate that CCR5 is the dominant chemokine receptor in this recruitment (Figure 1). Furthermore, in contrast to PGE2/TNF-α matured DC, FMKP/IFN-γ maturated DCs activate NK cells to produce IFN-γ in a IL-12/IL18 dependent manner, of which we show it contributes to strong TH1 polarization. In addition upon contact with these DCs NK cells upregulate their lymph node homing receptors, possibly inducing secondary migration to the lymph nodes. In conclusion, besides the identification of a superior DC maturation cocktail which contributes to NK-DC interactions, we identified a novel recruitment mechanism for peripheral human NK cells which may contribute to secondary, central DC-NK interactions and strong TH1 polarization.


Blood ◽  
1992 ◽  
Vol 79 (12) ◽  
pp. 3227-3232 ◽  
Author(s):  
K Taguchi ◽  
A Shibuya ◽  
Y Inazawa ◽  
T Abe

Abstract We investigated the effects of recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) and recombinant human granulocyte- CSF (rhG-CSF) on the generation of natural killer (NK) cells in vitro. NK cells were cultured from selected human bone marrow cells obtained after the elimination of mature T and NK cells. rhGM-CSF significantly suppressed the generation of CD56+ cells and NK activity (P less than .01) in a dose-dependent manner. The generation of large granular lymphocytes (LGL) was also suppressed in the presence of rhGM-CSF (P less than .01). In contrast, rhG-CSF had no effect on LGL (P greater than .05). Both rhGM-CSF and rhG-CSF had no influence on the CD56+ cell count in the peripheral blood. These results suggest that rhGM-CSF suppresses the in vitro generation of NK cells.


2012 ◽  
Vol 393 (1-2) ◽  
pp. 101-106 ◽  
Author(s):  
Vijaya Lakshmi Simhadri ◽  
Hinrich P. Hansen ◽  
Venkateswara R. Simhadri ◽  
Katrin S. Reiners ◽  
Martina Bessler ◽  
...  

Abstract The interplay between dendritic cells (DCs) and natural killer (NK) cells directs adaptive immune responses. The molecular basis of the cross-talk is largely undefined. Here, we provide evidence for a contribution of CD30 (TNFRSF8) and its ligand CD30L (TNFSF8) expressed on NK cells and DCs, respectively. We demonstrate that CD30-mediated engagement of CD30L induced cytokine secretion from immature DCs via the mitogen-activated protein kinase pathway. Moreover, CD30L engagement promoted differentiation to mature DCs. On the contrary, the engagement of CD30 on NK cells resulted in an NF-κB-dependent release of TNF-α/IFN-γ. These data uncover a novel and unexpected role for CD30/CD30L that contributes to proinflammatory immune responses.


Blood ◽  
2011 ◽  
Vol 118 (9) ◽  
pp. 2473-2482 ◽  
Author(s):  
Catharina H. M. J. Van Elssen ◽  
Joris Vanderlocht ◽  
Tammy Oth ◽  
Birgit L. M. G. Senden-Gijsbers ◽  
Wilfred T. V. Germeraad ◽  
...  

Abstract Among prostaglandins (PGs), PGE2 is abundantly expressed in various malignancies and is probably one of many factors promoting tumor growth by inhibiting tumor immune surveillance. In the current study, we report on a novel mechanism by which PGE2 inhibits in vitro natural killer–dendritic cell (NK-DC) crosstalk and thereby innate and adaptive immune responses via its effect on NK-DC crosstalk. The presence of PGE2 during IFN-γ/membrane fraction of Klebsiella pneumoniae DC maturation inhibits the production of chemokines (CCL5, CCL19, and CXCL10) and cytokines (IL-12 and IL-18), which is cAMP-dependent and imprinted during DC maturation. As a consequence, these DCs fail to attract NK cells and show a decreased capacity to trigger NK cell IFN-γ production, which in turn leads to reduced T-helper 1 polarization. In addition, the presence of PGE2 during DC maturation impairs DC-mediated augmentation of NK-cell cytotoxicity. Opposed to their inhibitory effects on peripheral blood–derived NK cells, PGE2 matured DCs induce IL-22 secretion of inflammation constraining NKp44+ NK cells present in mucosa-associated lymphoid tissue. The inhibition of NK-DC interaction is a novel regulatory property of PGE2 that is of possible relevance in dampening immune responses in vivo.


2001 ◽  
Vol 194 (12) ◽  
pp. 1813-1821 ◽  
Author(s):  
Matthias Lechmann ◽  
Daniëlle J.E.B. Krooshoop ◽  
Diana Dudziak ◽  
Elisabeth Kremmer ◽  
Christine Kuhnt ◽  
...  

CD83 is an immunoglobulin (Ig) superfamily member that is upregulated during the maturation of dendritic cells (DCs). It has been widely used as a marker for mature DCs, but its function is still unknown. To approach its potential functional role, we have expressed the extracellular Ig domain of human CD83 (hCD83ext) as a soluble protein. Using this tool we could show that immature as well as mature DCs bind to CD83. Since CD83 binds a ligand also expressed on immature DCs, which do not express CD83, indicates that binding is not a homophilic interaction. In addition we demonstrate that hCD83ext interferes with DC maturation downmodulating the expression of CD80 and CD83, while no phenotypical effects were observed on T cells. Finally, we show that hCD83ext inhibits DC-dependent allogeneic and peptide-specific T cell proliferation in a concentration dependent manner in vitro. This is the first report regarding functional aspects of CD83 and the binding of CD83 to DCs.


Blood ◽  
2011 ◽  
Vol 117 (17) ◽  
pp. 4511-4518 ◽  
Author(s):  
Katrina Soderquest ◽  
Nick Powell ◽  
Carmelo Luci ◽  
Nico van Rooijen ◽  
Andrés Hidalgo ◽  
...  

Abstract Natural killer (NK) cells play a major role in immunologic surveillance of cancer. Whether NK-cell subsets have specific roles during antitumor responses and what the signals are that drive their terminal maturation remain unclear. Using an in vivo model of tumor immunity, we show here that CD11bhiCD27low NK cells migrate to the tumor site to reject major histocompatibility complex class I negative tumors, a response that is severely impaired in Txb21−/− mice. The phenotypical analysis of Txb21-deficient mice shows that, in the absence of Txb21, NK-cell differentiation is arrested specifically at the CD11bhiCD27hi stage, resulting in the complete absence of terminally differentiated CD11bhiCD27low NK cells. Adoptive transfer experiments and radiation bone marrow chimera reveal that a Txb21+/+ environment rescues the CD11bhiCD27hi to CD11bhiCD27low transition of Txb21−/− NK cells. Furthermore, in vivo depletion of myeloid cells and in vitro coculture experiments demonstrate that spleen monocytes mediate the terminal differentiation of peripheral NK cells in a Txb21- and IL-15Rα–dependent manner. Together, these data reveal a novel, unrecognized role for Txb21 expression in monocytes in promoting NK-cell development and help appreciate how various NK-cell subsets are generated and participate in antitumor immunity.


2006 ◽  
Vol 203 (10) ◽  
pp. 2339-2350 ◽  
Author(s):  
Domenico Mavilio ◽  
Gabriella Lombardo ◽  
Audrey Kinter ◽  
Manuela Fogli ◽  
Andrea La Sala ◽  
...  

In this study, we demonstrate that the in vitro interactions between a CD56neg/CD16pos (CD56neg) subset of natural killer (NK) cells and autologous dendritic cells (DCs) from HIV-1–infected viremic but not aviremic individuals are markedly impaired and likely interfere with the development of an effective immune response. Among the defective interactions are abnormalities in the process of reciprocal NK–DC activation and maturation as well as a defect in the NK cell–mediated editing or elimination of immature DCs (iDCs). Notably, the lysis of mature DCs (mDCs) by autologous NK cells was highly impaired even after the complete masking of major histocompatibility complex I molecules, suggesting that the defective elimination of autologous iDCs is at the level of activating NK cell receptors. In this regard, the markedly impaired expression/secretion and function of NKp30 and TNF-related apoptosis-inducing ligand, particularly among the CD56neg NK cell subset, largely accounts for the highly defective NK cell–mediated lysis of autologous iDCs. Moreover, mDCs generated from HIV-1 viremic but not aviremic patients are substantially impaired in their ability to secrete interleukin (IL)-10 and -12 and to prime the proliferation of neighboring autologous NK cells, which, in turn, fail to secrete adequate amounts of interferon-γ.


Sign in / Sign up

Export Citation Format

Share Document