scholarly journals Natural Killer T Cell Ligand α-Galactosylceramide Enhances Protective Immunity Induced by Malaria Vaccines

2002 ◽  
Vol 195 (5) ◽  
pp. 617-624 ◽  
Author(s):  
Gloria Gonzalez-Aseguinolaza ◽  
Luc Van Kaer ◽  
Cornelia C. Bergmann ◽  
James M. Wilson ◽  
John Schmieg ◽  
...  

The important role played by CD8+ T lymphocytes in the control of parasitic and viral infections, as well as tumor development, has raised the need for the development of adjuvants capable of enhancing cell-mediated immunity. It is well established that protective immunity against liver stages of malaria parasites is primarily mediated by CD8+ T cells in mice. Activation of natural killer T (NKT) cells by the glycolipid ligand, α-galactosylceramide (α-GalCer), causes bystander activation of NK, B, CD4+, and CD8+ T cells. Our study shows that coadministration of α-GalCer with suboptimal doses of irradiated sporozoites or recombinant viruses expressing a malaria antigen greatly enhances the level of protective anti-malaria immunity in mice. We also show that coadministration of α-GalCer with various different immunogens strongly enhances antigen-specific CD8+ T cell responses, and to a lesser degree, Th1-type responses. The adjuvant effects of α-GalCer require CD1d molecules, Vα14 NKT cells, and interferon γ. As α-GalCer stimulates both human and murine NKT cells, these findings should contribute to the design of more effective vaccines against malaria and other intracellular pathogens, as well as tumors.

2011 ◽  
Vol 106 (11) ◽  
pp. 814-819 ◽  
Author(s):  
Godfrey Getz ◽  
Paul VanderLaan ◽  
Catherine Reardon

SummaryCells of both the innate and adaptive immune system participate in the development of atherosclerosis, a chronic inflammatory disorder of medium and large arteries. Natural killer T (NKT) cells express surface markers characteristic of natural killer cells and conventional T cells and bridge the innate and adaptive immune systems. The development and activation of NKT cells is dependent upon CD1d, a MHC-class I-type molecule that presents lipids, especially glycolipids to the T cell receptors on NKT cells. There are two classes of NKT cells; invariant NKT cells that express a semi-invariant T cell receptor and variant NKT cells. This review summarises studies in murine models in which the effect of the activation, overexpression or deletion of NKT cells or only invariant NKT cells on atherosclerosis has been examined.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaori Endo-Umeda ◽  
Hiroyuki Nakashima ◽  
Shigeyuki Uno ◽  
Shota Toyoshima ◽  
Naoki Umeda ◽  
...  

AbstractThe nuclear receptors liver X receptor α (LXRα) and LXRβ are lipid sensors that regulate lipid metabolism and immunity. Natural killer T (NKT) cells, a T cell subset expressing surface markers of both natural killer cells and T lymphocytes and involved in antitumor immunity, are another abundant immune cell type in the liver. The potential function of the metabolic regulators LXRα/β in hepatic NKT cells remains unknown. In this study, we examined the role of LXRα and LXRβ in NKT cells using mice deficient for LXRα and/or LXRβ, and found that hepatic invariant NKT (iNKT) cells are drastically decreased in LXRα/β-KO mice. Cytokine production stimulated by the iNKT cell activator α-galactosylceramide was impaired in LXRα/β-KO hepatic mononuclear cells and in LXRα/β-KO mice. iNKT cell-mediated antitumor effect was also disturbed in LXRα/β-KO mice. LXRα/β-KO mice transplanted with wild-type bone marrow showed decreased iNKT cells in the liver and spleen. The thymus of LXRα/β-KO mice showed a decreased population of iNKT cells. In conclusion, LXRα and LXRβ are essential for NKT cell-mediated immunity, such as cytokine production and hepatic antitumor activity, and are involved in NKT cell development in immune tissues, such as the thymus.


2021 ◽  
Author(s):  
◽  
John David Gibbins

<p>The immune system has the potential to selectively target and eliminate tumours cells. However, the induction of an immunosuppressive environment by factors released by tumours cells, or by the tumour stroma, in combination with difficulties in differentiating between healthy and malignant cells, contributes to inefficient or disabled anti-tumour immune responses. A variety of different immunotherapeutic approaches are being developed to tip the balance in favour of anti-tumour immunity. Many of these approaches are designed to stimulate improved activity of T cells with specificity for tumour-associated antigens.  This thesis explores how T cell-mediated responses are initiated and maintained in immunotherapy, with an emphasis on the role of antigen presentation by resident dendritic cells (DCs). An animal model was used in which a DC subset in the spleen that expresses the cell marker langerin could be selectively ablated during the course of therapy. As these DCs have been shown to be uniquely capable of acquiring circulating antigens and cellular debris, and have a heightened capacity for cross-priming CD8⁺ T cells, it was hypothesised that the function of these cells could play a significant role in determining the outcome of immunotherapies.  A model of adoptive T cell therapy was examined in mice challenged with an intravenously administered lymphoma that formed tumour foci in a variety of locations in the body. Treating established tumours by adoptively transferring in vitro activated effector CD8⁺ T cells significantly increased their symptom-free survival. The protection received by this therapy was dependent on a stimulus being provided by endogenous langerin⁺ CD8α⁺ DCs to the transferred T cells. In the absence of langerin⁺ CD8α⁺ DCs, the proportion and number of transferred anti-tumour CD8⁺ T cells was lower in the blood and spleen. However, no obvious differences in phenotype and function could be defined. Langerin⁺ CD8α⁺ DCs therefore contribute to the maintenance of an effective CD8⁺ T cell-based immunotherapy and the role of endogenous DCs should be taken into consideration during the design of immunotherapies.  To investigate the role of langerin⁺ CD8α⁺ DCs in initiating effector T cell responses, a novel whole-cell vaccine was developed for the treatment of acute myeloid leukaemia (AML). This vaccine exploited the stimulatory functions of invariant natural killer T cells, and was therefore administered intravenously to access the large invariant natural killer T cell compartment of the spleen. The vaccine completely protected mice from developing leukaemia when challenged with AML cells after vaccination, with CD4⁺ and CD8⁺ T cells mediating protection. The immune response generated by the vaccine was shown to be completely dependent on langerin⁺ CD8α⁺ DCs. In hosts with established tumours; however, the vaccine was ineffective. This may have been partially due to a reduced function of langerin⁺ CD8α⁺ DCs as their activation phenotype was significantly reduced in the presence of established AML; however, non-specific T cells could still be stimulated via these DCs. Reduced vaccine efficacy was associated with increased number and/or function of suppressor cells, including regulatory T cells and myeloid derived suppressor cells within the host. In addition, in leukemic hosts, the proportion of T cells in the spleen was reduced, and the function of AML-specific CD4⁺ T cells, but not CD8⁺ T cells, was impaired. Driving AML-bearing hosts into remission with chemotherapy prior to vaccination enabled the vaccine to protect the host from subsequent AML challenge. Langerin⁺ CD8α⁺ DCs are therefore responsible for initiating the vaccine-induced immune response in this model and their suppression may have contributed to the inefficacy of the vaccine in the presence of established tumours.</p>


2006 ◽  
Vol 12 (12) ◽  
pp. 1345-1346 ◽  
Author(s):  
Jyoti Das ◽  
Paul Eynott ◽  
Ray Jupp ◽  
Alfred Bothwell ◽  
Luc Van Kaer ◽  
...  

2021 ◽  
Author(s):  
◽  
John David Gibbins

<p>The immune system has the potential to selectively target and eliminate tumours cells. However, the induction of an immunosuppressive environment by factors released by tumours cells, or by the tumour stroma, in combination with difficulties in differentiating between healthy and malignant cells, contributes to inefficient or disabled anti-tumour immune responses. A variety of different immunotherapeutic approaches are being developed to tip the balance in favour of anti-tumour immunity. Many of these approaches are designed to stimulate improved activity of T cells with specificity for tumour-associated antigens.  This thesis explores how T cell-mediated responses are initiated and maintained in immunotherapy, with an emphasis on the role of antigen presentation by resident dendritic cells (DCs). An animal model was used in which a DC subset in the spleen that expresses the cell marker langerin could be selectively ablated during the course of therapy. As these DCs have been shown to be uniquely capable of acquiring circulating antigens and cellular debris, and have a heightened capacity for cross-priming CD8⁺ T cells, it was hypothesised that the function of these cells could play a significant role in determining the outcome of immunotherapies.  A model of adoptive T cell therapy was examined in mice challenged with an intravenously administered lymphoma that formed tumour foci in a variety of locations in the body. Treating established tumours by adoptively transferring in vitro activated effector CD8⁺ T cells significantly increased their symptom-free survival. The protection received by this therapy was dependent on a stimulus being provided by endogenous langerin⁺ CD8α⁺ DCs to the transferred T cells. In the absence of langerin⁺ CD8α⁺ DCs, the proportion and number of transferred anti-tumour CD8⁺ T cells was lower in the blood and spleen. However, no obvious differences in phenotype and function could be defined. Langerin⁺ CD8α⁺ DCs therefore contribute to the maintenance of an effective CD8⁺ T cell-based immunotherapy and the role of endogenous DCs should be taken into consideration during the design of immunotherapies.  To investigate the role of langerin⁺ CD8α⁺ DCs in initiating effector T cell responses, a novel whole-cell vaccine was developed for the treatment of acute myeloid leukaemia (AML). This vaccine exploited the stimulatory functions of invariant natural killer T cells, and was therefore administered intravenously to access the large invariant natural killer T cell compartment of the spleen. The vaccine completely protected mice from developing leukaemia when challenged with AML cells after vaccination, with CD4⁺ and CD8⁺ T cells mediating protection. The immune response generated by the vaccine was shown to be completely dependent on langerin⁺ CD8α⁺ DCs. In hosts with established tumours; however, the vaccine was ineffective. This may have been partially due to a reduced function of langerin⁺ CD8α⁺ DCs as their activation phenotype was significantly reduced in the presence of established AML; however, non-specific T cells could still be stimulated via these DCs. Reduced vaccine efficacy was associated with increased number and/or function of suppressor cells, including regulatory T cells and myeloid derived suppressor cells within the host. In addition, in leukemic hosts, the proportion of T cells in the spleen was reduced, and the function of AML-specific CD4⁺ T cells, but not CD8⁺ T cells, was impaired. Driving AML-bearing hosts into remission with chemotherapy prior to vaccination enabled the vaccine to protect the host from subsequent AML challenge. Langerin⁺ CD8α⁺ DCs are therefore responsible for initiating the vaccine-induced immune response in this model and their suppression may have contributed to the inefficacy of the vaccine in the presence of established tumours.</p>


Blood ◽  
2009 ◽  
Vol 113 (25) ◽  
pp. 6382-6385 ◽  
Author(s):  
Jeremy B. Swann ◽  
Adam P. Uldrich ◽  
Serani van Dommelen ◽  
Janelle Sharkey ◽  
William K. Murray ◽  
...  

Abstract CD1d-restricted T cells are considered to play a host protective effect in tumor immunity, yet the evidence for a role of natural killer T (NKT) cells in tumor immune surveillance has been weak and data from several tumor models has suggested that some (type II) CD1d-restricted T cells may also suppress some types of antitumor immune response. To substantiate an important role for CD1d-restricted T cells in host response to cancer, we have evaluated tumor development in p53+/− mice lacking either type I NKT cells (TCR Jα18−/−) or all CD1d-restricted T cells (CD1d−/−). Our findings support a key role for type I NKT cells in suppressing the onset of sarcomas and hematopoietic cancers caused by p53 loss but do not suggest that other CD1d-restricted T cells are critical in regulating the same tumor development.


2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


2006 ◽  
Vol 81 (2) ◽  
pp. 934-944 ◽  
Author(s):  
Markus Cornberg ◽  
Brian S. Sheridan ◽  
Frances M. Saccoccio ◽  
Michael A. Brehm ◽  
Liisa K. Selin

ABSTRACT Live vaccinia virus (VV) vaccination has been highly successful in eradicating smallpox. However, the mechanisms of immunity involved in mediating this protective effect are still poorly understood, and the roles of CD8 T-cell responses in primary and secondary VV infections are not clearly identified. By applying the concept of molecular mimicry to identify potential CD8 T-cell epitopes that stimulate cross-reactive T cells specific to lymphocytic choriomeningitis virus (LCMV) and VV, we identified after screening only 115 peptides two VV-specific immunogenic epitopes that mediated protective immunity against VV. An immunodominant epitope, VV-e7r130, did not generate cross-reactive T-cell responses to LCMV, and a subdominant epitope, VV-a11r198, did generate cross-reactive responses to LCMV. Infection with VV induced strong epitope-specific responses which were stable into long-term memory and peaked at the time virus was cleared, consistent with CD8 T cells assisting in the control of VV. Two different approaches, direct adoptive transfer of VV-e7r-specific CD8 T cells and prior immunization with a VV-e7r-expressing ubiquitinated minigene, demonstrated that memory CD8 T cells alone could play a significant role in protective immunity against VV. These studies suggest that exploiting cross-reactive responses between viruses may be a useful tool to complement existing technology in predicting immunogenic epitopes to large viruses, such as VV, leading to a better understanding of the role CD8 T cells play during these viral infections.


2009 ◽  
Vol 77 (12) ◽  
pp. 5501-5508 ◽  
Author(s):  
Christina Berchtold ◽  
Klaus Panthel ◽  
Stefan Jellbauer ◽  
Brigitte Köhn ◽  
Elisabeth Roider ◽  
...  

ABSTRACT Preexisting antivector immunity can severely compromise the ability of Salmonella enterica serovar Typhimurium live vaccines to induce protective CD8 T-cell frequencies after type III secretion system-mediated heterologous protein translocation in orally immunized mice. To circumvent this problem, we injected CpG DNA admixed to the immunodominant p60217-225 peptide from Listeria monocytogenes subcutaneously into BALB/c mice and coadministered a p60-translocating Salmonella strain by the orogastric route. The distribution of tetramer-positive p60217-225-specific effector and memory CD8 T cells was analyzed by costaining of lymphocytes with CD62L and CD127. In contrast to the single oral application of recombinant Salmonella or single immunization with CpG and p60, in the spleens from mice immunized with a combination of both vaccine types a significantly higher level of p60-specific CD8 T cells with a predominance of the effector memory T-cell subset was detected. In vivo protection studies revealed that this CD8 T-cell population conferred sterile protective immunity against a lethal infection with L. monocytogenes. However, p60-specific central memory CD8 T cells induced by single vaccination with CpG and p60 were not able confer effective protection against rapidly replicating intracellular Listeria. In conclusion, we provide compelling evidence that the combination of Salmonella type III-mediated antigen delivery and CpG immunization is an attractive novel vaccination strategy to modulate CD8 differentiation patterns toward distinct antigen-specific T-cell subsets with favorable protective capacities.


Sign in / Sign up

Export Citation Format

Share Document