scholarly journals Human Dendritic Cells Activated by TSLP and CD40L Induce Proallergic Cytotoxic T Cells

2003 ◽  
Vol 197 (8) ◽  
pp. 1059-1063 ◽  
Author(s):  
Michel Gilliet ◽  
Vassili Soumelis ◽  
Norihiko Watanabe ◽  
Shino Hanabuchi ◽  
Svetlana Antonenko ◽  
...  

Human thymic stromal lymphopoietin (TSLP) is a novel epithelial cell–derived cytokine, which induces dendritic cell (DC)-mediated CD4+ T cell responses with a proallergic phenotype. Although the participation of CD8+ T cells in allergic inflammation is well documented, their functional properties as well as the pathways leading to their generation remain poorly understood. Here, we show that TSLP-activated CD11c+ DCs potently activate and expand naive CD8+ T cells, and induce their differentiation into interleukin (IL)-5 and IL-13–producing effectors exhibiting poor cytolytic activity. Additional CD40L triggering of TSLP-activated DCs induced CD8+ T cells with potent cytolytic activity, producing large amounts of interferon (IFN)-γ, while retaining their capacity to produce IL-5 and IL-13. These data further support the role of TSLP as initial trigger of allergic T cell responses and suggest that CD40L-expressing cells may act in combination with TSLP to amplify and sustain pro-allergic responses and cause tissue damage by promoting the generation of IFN-γ–producing cytotoxic effectors.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 623-623
Author(s):  
Andreas Heitger ◽  
Birgit Juergens ◽  
Ursula Hainz ◽  
Dietmar Fuchs

Abstract An enhanced tryptophan metabolism mediated by the enzymatic activity of indoleamine 2,3 dioxygenase (IDO) has recently been demonstrated to profoundly affect T cell responses. By the present study we explored whether human dendritic cells (DCs) displaying high IDO expression and activity, down-regulate allogeneic T cell responses. A comparison of lipopolysaccaride (LPS), interferon-γ (IFN-γ), and CD40L as DC maturation agents showed that most abundant IDO expression and activity in DCs was observed when immature DCs were exposed to a combination of LPS and IFN-γ for 48 hours. This time period of maturation was associated with the development of a mature DC phenotype. In contrast, semi-mature DCs, i.e. DCs matured for 4 hours only, were IDO negative. In co-cultures with allogeneic T cells both types of DCs began to metabolize tryptophan, as determined by decreasing concentrations of tryptophan and increasing concentrations of kynurenines in cell culture supernatants, but mature IDO positive DCs did so at a faster rate (complete consumption of tryptophan within 16 hours of co-culture) than semi-mature DCs. A comparison of the allo-stimulatory capacity of semi-mature IDO negative DCs and mature IDO positive DCs showed that at a high DC/T cell ratio (1:1) IDO positive DCs had a significantly reduced capacity to stimulate allogeneic T cells (median 63% reduction, n=5). The reduction of the allogeneic T cell response induced by IDO positive DCs was reversed upon the addition of the IDO inhibitor methylhydantoin-tryptophan to the co-cultures, suggesting an IDO dependent mechanism. Furthermore, allogeneic T cells exposed to IDO positive DCs had an increased rate of apoptosis in the activated cell fraction and after 8 days of co-culture contained a cell fraction (~30%) displaying a CD4+CD25+highFOXP3+ phenotype. These latter cells, when enriched by fluorescent activated cell sorting (FACS), were able to suppress the proliferative response of naive T cells to anti-CD3 mediated stimulation, which indicates the generation of a regulatory T cell population by IDO positive DCs. Together, these findings suggest that the amount of IDO expression and activity by DCs is one feature to govern the type of response of stimulated T cells. Human DCs can be induced to display high levels of IDO expression and activity and, thereby, acquire the ability to effectivley modulate allogeneic T cell responses towards tolerance by eliminating allo-reactive T cells through apoptosis and augmentation of their regulatory rather than their effector potential. Our current approaches address whether this property can be employed to use DCs for the generation of allo-antigen specific tolerance in the setting of hematopoietic cell transplantation.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2910-2910
Author(s):  
Katayoun Rezvani ◽  
Agnes S. M. Yong ◽  
Abdul Tawab ◽  
Behnam Jafarpour ◽  
Rhoda Eniafe ◽  
...  

Abstract PRAME (Preferentially expressed antigen of melanoma) is aberrantly expressed in hematological malignancies and may be a useful target for immunotherapy in leukemia. We studied CD8+ T-cell responses to four HLA-A*0201-restricted PRAME-derived epitopes (PRA100, PRA142, PRA300, PRA425) in HLA-A*0201-positive patients with acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML) and healthy donors, using PRA300/HLA-A*0201 tetramer staining, intracellular cytokine (IC) assay and ex-vivo and cultured ELISPOT analysis. CD8+ T-cells recognizing PRAME peptides were detected directly ex-vivo in 4/10 ALL, 6/10 AML, 3/10 CML patients and 3/10 donors. The frequency of PRAME-specific CD8+ T-cells was greater in patients with AML, CML and ALL than in healthy controls. All peptides were immunogenic in patients, whilst PRA300 was the only immunogenic peptide in donors. High PRAME expression in patient peripheral blood mononuclear cells was associated with responses to two or more PRAME epitopes (4/7 vs. 0/23 in individuals with low PRAME expression, P = 0.001), suggesting a PRAME-driven T-cell response. In 2 patients studied PRA300/HLA-A*0201+ CD8+T-cells were found to be a mixture of effector and central memory phenotypes. To determine the functional avidity of the PRAME T-cell response, the response of CD8+ T-cells to stimulation with 2 concentrations of peptide was measured by IC-IFN-γ staining. High-avidity CD8+ T-cells were defined as those capable of producing IFN-γ in response to the lower concentration of peptide (0.1μM), while low-avidity CD8+ T-cells were those that only produced IFN-γ in response to the higher concentration of peptide (10 μM). Both high and low-avidity CD8+ T-cell responses could be detected for all peptides tested (median 1.05, 0.90, 0.52, 0.40 high/lowavidity ratios for PRA100, PRA142, PRA300 and PRA425 respectively). In patients with high PRAME expression (>0.001 PRAME/ABL) low-avidity CD8+ T-cell responses to PRAME peptides were more prominent than high-avidity responses, suggesting selective deletion of high-avidity T-cells. In contrast, in some patients with levels <0.001 PRAME/ABL, we could detect the presence of high-avidity CD8+ T-cell responses to PRAME. PRAME-specific CD8+ T-cells were further characterized by IC staining for IL-2, IL-4 and IL-10 production and CD107a mobilization (as a marker of cytotoxicity). Following stimulation with the relevant PRAME peptide, there was no significant production of IL-2, IL-4 or IL-10, suggesting a Tc1 effector response but no significant CD107a mobilization was detected despite significant CD107a mobilization in the same patient in response to CMVpp65495. This finding suggests that patients with leukemia have a selective functional impairment of PRAME-specific CD8+ T-cells, consistent with PRAME-specific T cell exhaustion. However, PRAME-specific T-cells were readily expanded in the presence of cytokines in short-term cultures in-vitro to produce IFN-γ, suggesting that it may be possible to improve the functional capacity of PRAME-specific T-cells for therapeutic purposes. These results provide evidence for spontaneous T-cell reactivity against multiple epitopes of PRAME in ALL, AML and CML and support the usefulness of PRAME as a target for immunotherapy in leukemia. The predominance of low-avidity PRAME-specific CD8+ T-cells suggests that achievement of a state of minimal residual disease may be required prior to peptide vaccination to augment T-cell immune surveillance.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4096-4096
Author(s):  
Katayoun Rezvani ◽  
Agnes S. M. Yong ◽  
Stephan Mielke ◽  
Behnam Jafarpour ◽  
Bipin N. Savani ◽  
...  

Abstract Abstract 4096 Poster Board III-1031 We previously demonstrated the immunogenicity of a combined vaccine approach employing two leukemia-associated antigenic peptides, PR1 and WT1 (Rezvani Blood 2008). Eight patients with myeloid malignancies received one subcutaneous 0.3 mg and 0.5 mg dose each of PR1 and WT1 vaccines in Montanide adjuvant, with 100 μg of granulocyte-macrophage colony-stimulating factor (GM-CSF). CD8+ T-cell responses against PR1 or WT1 were detected in all patients as early as 1 week post-vaccination. However, responses were only sustained for 3-4 weeks. The emergence of PR1 or WT1-specific CD8+ T-cells was associated with a significant but transient reduction in minimal residual disease (MRD) as assessed by WT1 expression, suggesting a vaccine-induced anti-leukemia response. Conversely, loss of response was associated with reappearance of WT1 transcripts. We hypothesized that maintenance of sustained or at least repetitive responses may require frequent boost injections. We therefore initiated a phase 2 study of repeated vaccination with PR1 and WT1 peptides in patients with myeloid malignancies. Five patients with acute myeloid leukemia (AML) and 2 patients with myelodysplastic syndrome (MDS) were recruited to receive 6 injections at 2 week intervals of PR1 and WT1 in Montanide adjuvant, with GM-CSF as previously described. Six of 7 patients completed 6 courses of vaccination and follow-up as per protocol, to monitor toxicity and immunological responses. Responses to PR1 or WT1 vaccine were detected in all patients after only 1 dose of vaccine. However, additional boosting did not further increase the frequency of PR1 or WT1-specific CD8+ T-cell response. In 4/6 patients the vaccine-induced T-cell response was lost after the fourth dose and in all patients after the sixth dose of vaccine. To determine the functional avidity of the vaccine-induced CD8+ T-cell response, the response of CD8+ T-cells to stimulation with 2 concentrations of PR1 and WT1 peptides (0.1 and 10 μM) was measured by IC-IFN-γ staining. Vaccination led to preferential expansion of low avidity PR1 and WT1 specific CD8+ T-cell responses. Three patients (patients 4, 6 and 7) returned 3 months following the 6th dose of PR1 and WT1 peptide injections to receive a booster vaccine. Prior to vaccination we could not detect the presence of PR1 and WT1 specific CD8+ T-cells by direct ex-vivo tetramer and IC-IFN-γ assay or with 1-week cultured IFN-γ ELISPOT assay, suggesting that vaccination with PR1 and WT1 peptides in Montanide adjuvant does not induce memory CD8+ T-cell responses. This observation is in keeping with recent work in a murine model where the injection of minimal MHC class I binding peptides derived from self-antigens mixed with IFA adjuvant resulted in a transient effector CD8+ T cell response with subsequent deletion of these T cells and failure to induce CD8+ T cell memory (Bijker J Immunol 2007). This observation can be partly explained by the slow release of vaccine peptides from the IFA depot without systemic danger signals, leading to presentation of antigen in non-inflammatory lymph nodes by non-professional antigen presenting cells (APCs). An alternative explanation for the transient vaccine-induced immune response may be the lack of CD4+ T cell help. In summary these data support the immunogenicity of PR1 and WT1 peptide vaccines. However new approaches will be needed to induce long-term memory responses against leukemia antigens. To avoid tolerance induction we plan to eliminate Montanide adjuvant and use GM-CSF alone. Supported by observations that the in vivo survival of CD8+ T-effector cells against viral antigens are improved by CD4+ helper cells, we are currently attempting to induce long-lasting CD8+ T-cell responses to antigen by inducing CD8+ and CD4+ T-cell responses against class I and II epitopes of WT1 and PR1. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 20 (10) ◽  
pp. 1604-1616 ◽  
Author(s):  
Giulia Franzoni ◽  
Nitin V. Kurkure ◽  
Daniel S. Edgar ◽  
Helen E. Everett ◽  
Wilhelm Gerner ◽  
...  

ABSTRACTVaccination with live attenuated classical swine fever virus (CSFV) induces solid protection after only 5 days, which has been associated with virus-specific T cell gamma interferon (IFN-γ) responses. In this study, we employed flow cytometry to characterize T cell responses following vaccination and subsequent challenge infections with virulent CSFV. The CD3+CD4−CD8hiT cell population was the first and major source of CSFV-specific IFN-γ. A proportion of these cells showed evidence for cytotoxicity, as evidenced by CD107a mobilization, and coexpressed tumor necrosis factor alpha (TNF-α). To assess the durability and recall of these responses, a second experiment was conducted where vaccinated animals were challenged with virulent CSFV after 5 days and again after a further 28 days. While virus-specific CD4 T cell (CD3+CD4+CD8α+) responses were detected, the dominant response was again from the CD8 T cell population, with the highest numbers of these cells being detected 14 and 7 days after the primary and secondary challenges, respectively. These CD8 T cells were further characterized as CD44hiCD62L−and expressed variable levels of CD25 and CD27, indicative of a mixed effector and effector memory phenotype. The majority of virus-specific IFN-γ+CD8 T cells isolated at the peaks of the response after each challenge displayed CD107a on their surface, and subpopulations that coexpressed TNF-α and interleukin 2 (IL-2) were identified. While it is hoped that these data will aid the rational design and/or evaluation of next-generation marker CSFV vaccines, the novel flow cytometric panels developed should also be of value in the study of porcine T cell responses to other pathogens/vaccines.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jessica Badolato-Corrêa ◽  
Fabiana Rabe Carvalho ◽  
Iury Amancio Paiva ◽  
Débora Familiar-Macedo ◽  
Helver Gonçalves Dias ◽  
...  

Background: Zika virus (ZIKV) infection causes for mild and self-limiting disease in healthy adults. In newborns, it can occasionally lead to a spectrum of malformations, the congenital Zika syndrome (CZS). Thus, little is known if mothers and babies with a history of ZIKV infection were able to develop long-lasting T-cell immunity. To these issues, we measure the prevalence of ZIKV T-cell immunity in a cohort of mothers infected to the ZIKV during pregnancy in the 2016–2017 Zika outbreak, who gave birth to infants affected by neurological complications or asymptomatic ones.Results: Twenty-one mothers and 18 children were tested for IFN-γ ELISpot and T-cell responses for flow cytometry assays in response to CD4 ZIKV and CD8 ZIKV megapools (CD4 ZIKV MP and CD8 ZIKV MP). IFN-γ ELISpot responses to ZIKV MPs showed an increased CD4 and CD8 T-cell responses in mothers compared to children. The degranulation activity and IFN-γ-producing CD4 T cells were detected in most mothers, and children, while in CD8 T-cells, low responses were detected in these study groups. The total Temra T cell subset is enriched for IFN-γ+ CD4 T cells after stimulation of CD4 ZIKV MP.Conclusion: Donors with a history of ZIKV infection demonstrated long-term CD4 T cell immunity to ZIKV CD4 MP. However, the same was not observed in CD8 T cells with the ZIKV CD8 MP. One possibility is that the cytotoxic and pro-inflammatory activities of CD8 T cells are markedly demonstrated in the early stages of infection, but less detected in the disease resolution phase, when the virus has already been eliminated. The responses of mothers' T cells to ZIKV MPs do not appear to be related to their children's clinical outcome. There was also no marked difference in the T cell responses to ZIKV MP between children affected or not with CZS. These data still need to be investigated, including the evaluation of the response of CD8 T cells to other ZIKV peptides.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 829
Author(s):  
Jacob Kocher ◽  
Tammy Bui Castellucci ◽  
Ke Wen ◽  
Guohua Li ◽  
Xingdong Yang ◽  
...  

Noroviruses (NoVs) are a leading cause of acute gastroenteritis worldwide. P particles are a potential vaccine candidate against NoV. Simvastatin is a cholesterol-reducing drug that is known to increase NoV infectivity. In this study, we examined simvastatin’s effects on P particle-induced protective efficacy and T-cell immunogenicity using the gnotobiotic pig model of human NoV infection and diarrhea. Pigs were intranasally inoculated with three doses (100 µg/dose) of GII.4/VA387-derived P particles together with monophosphoryl lipid A and chitosan adjuvants. Simvastatin-fed pigs received 8 mg/day orally for 11 days prior to challenge. A subset of pigs was orally challenged with 10 ID50 of a NoV GII.4/2006b variant at post-inoculation day (PID) 28 and monitored for 7 days post-challenge. Intestinal and systemic T cell responses were determined pre- and postchallenge. Simvastatin abolished the P particle’s protection and significantly increased diarrhea severity after NoV infection. Simvastatin decreased proliferation of virus-specific and non-specific CD8 T cells in duodenum and virus-specific CD4 and CD8 T cells in spleen and significantly reduced numbers of intestinal mononuclear cells in vaccinated pigs. Furthermore, simvastatin significantly decreased numbers of duodenal CD4+IFN-γ+, CD8+IFN-γ+ and regulatory T cells and total duodenal activated CD4+ and CD8+ T cells in vaccinated pigs pre-challenge at PID 28. Following challenge, simvastatin prevented the IFN-γ+ T cell response in spleen of vaccinated pigs. These results indicate that simvastatin abolished P particle vaccine-induced partial protection through, at least in part, impairing T cell immunity. The findings have specific implications for the development of preventive and therapeutic strategies against NoV gastroenteritis, especially for the elderly population who takes statin-type drugs.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e14632-e14632
Author(s):  
Alexander Badamchi-Zadeh ◽  
Kelly Dare Moynihan ◽  
Nicholas M Provine ◽  
Rafael Larocca ◽  
Darrell J Irvine ◽  
...  

e14632 Background: The combined inhibition of histone deacetylases (HDAC) and the proteins of the bromo and extra terminal (BET) family have recently shown therapeutic efficacy against pancreatic ductal adenocarcinoma, melanoma and lymphoma cancers in murine studies. However, in these studies the role of the immune system in therapeutically controlling these cancers was not explored. Methods: We sought to investigate the effect of the HDAC inhibitor romidepsin (RMD) and the BET inhibitor I-BET151, both singly and in combination, on vaccine elicited immune responses. C57Bl/6 mice were immunized with differing vaccines (Adenoviral, protein) in prime-boost regimens, under treatment with RMD, I-BET151, or RMD+I-BET151. Results: The combination RMD+I-BET151, administered during Adenoviral prime-boost vaccination, resulted in the significant increase in the frequency and number of antigen-specific CD8 T cells. RMD+I-BET151 treatment affected vaccine-elicited secondary T cell responses, significantly increasing the frequency of IFN-γ+ splenic CD8 T cells and maintaining their dual IFN-γ+TNFa+ polyfunctionality. These CD8 T cells maintained their protective ability against Listeria monocytogenes, and protected against B16-OVA challenge. The significant augmentation of vaccine elicited CD8 T cell responses under RMD+I-BET151 treatment was additionally observed following protein (OVA+CpG) prime-boost vaccination, resulting in greater protection against B16-OVA challenge and enhanced survival. T-regulatory cell (FoxP3+CD4+) frequency and total CD4 and CD8 cell numbers remained unaltered following RMD+I-BET151 treatment. Conclusions: Combined HDAC and BET inhibition resulted in greater vaccine-elicited CD8 T cell responses following immunization by multiple vaccine platforms, and enhanced protection against B16-OVA challenges. We are currently assessing immunological mechanisms of action for this combined HDAC and BET inhibition.


2005 ◽  
Vol 73 (5) ◽  
pp. 2910-2922 ◽  
Author(s):  
Vanja Lazarevic ◽  
David J. Yankura ◽  
Sherrie J. Divito ◽  
JoAnne L. Flynn

ABSTRACT Several studies have provided evidence that interleukin-15 (IL-15) can enhance protective immune responses against Mycobacterium tuberculosis infection. However, the effects of IL-15 deficiency on the functionality of M. tuberculosis-specific CD4 and CD8 T cells are unknown. In this study, we investigated the generation and maintenance of effector and memory T-cell responses following M. tuberculosis infection of IL-15−/− mice. IL-15−/− mice had slightly higher bacterial numbers during chronic infection, which were accompanied by an increase in gamma interferon (IFN-γ)-producing CD4 and CD8 T cells. There was no evidence of increased apoptosis or a defect in proliferation of CD8 effector T cells following M. tuberculosis infection. The induction of cytotoxic and IFN-γ CD8 T-cell responses was normal in the absence of IL-15 signaling. The infiltration of CD4 and CD8 T cells into the lungs of “immune” IL-15−/− mice was delayed in response to M. tuberculosis challenge. These findings demonstrate that efficient effector CD4 and CD8 T cells can be developed following M. tuberculosis infection in the absence of IL-15 but that recall T-cell responses may be impaired.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 287-287 ◽  
Author(s):  
Katayoun Rezvani ◽  
Agnes S.M. Yong ◽  
Stephan Mielke ◽  
Bipin N. Savani ◽  
Laura Musse ◽  
...  

Abstract The graft-versus-leukemia (GVL) effect following allogeneic stem cell transplantation (SCT) is evidence that T lymphocytes can eradicate leukemia. The successful identification of a range of leukemia-associated antigens such as proteinase 3 (PR3) and Wilms tumour-1 (WT1) has stimulated efforts to induce leukemia-specific T-cell responses to these antigens using peptide vaccines. Here we describe the safety and immunogenicity of a combined vaccine of two leukemia-associated antigenic peptides, PR1 and WT1. Eight HLA-A*0201 positive patients with myeloid malignancies (2 myelodysplasia, 5 acute myeloid leukemia and 1 chronic myeloid leukemia) received one subcutaneous dose each of PR1 and WT1 vaccines in Montanide adjuvant, with granulocyte-macrophage colony-stimulating factor (GM-CSF). All patients completed 4 weeks follow-up to monitor toxicity and immunological responses. Toxicity was limited to grade 1–2. All remain alive at a median of 252 days (range 105–523). We analyzed the immunological response to vaccination using PR1/HLA-A*0201 and WT1/HLA-A*0201 tetrameric complexes and flow cytometry for intracellular interferon-gamma (IFN-γ) in samples obtained pre- and weekly post-vaccination. A significant CD8+ T-cell response to the vaccine was defined as the emergence of PR1 or WT1-specific CD8+ T-cells when the pre-study analysis was negative or a twofold increase in frequencies when responses were present pre-vaccination. Following vaccination, a significant CD8+ T-cell response to PR1 was seen in 7/8 patients (median 0.34%, range 0.04–0.48%), to WT1 in 5/8 patients (median 0.29%, range 0–0.42%) and to one or both antigens in 8/8 patients. Vaccine-induced CD8+ T-cells were seen as early as 1 week post-vaccination, produced IFN-γ and were preferentially expanded in the effector compartment (CD45RO+/-CD27−). Post-vaccination, there was a strong correlation between the emergence of PR1 or WT1+CD8+ T-cells and a reduction in WT1 mRNA expression, a marker of minimal residual disease, suggesting a vaccine-driven anti-leukemia effect. Loss of response was associated with reappearance of WT1 transcripts (P<0.01). Two patients with detectable CD8+ T-cell responses to PR1 who failed to have a reduction in MRD relapsed 3–6 months following completion of vaccination. This is the first demonstration that a combined PR1 and WT1 vaccine is immunogenic. Based on these results we have initiated a phase 2 study of repeated vaccination with PR1 and WT1 peptides in patients with myeloid malignancies.


Sign in / Sign up

Export Citation Format

Share Document