scholarly journals Active Inhibition of Plasma Cell Development in Resting B Cells by Microphthalmia-associated Transcription Factor

2004 ◽  
Vol 200 (1) ◽  
pp. 115-122 ◽  
Author(s):  
Ling Lin ◽  
Andrea J. Gerth ◽  
Stanford L. Peng

B cell terminal differentiation involves development into an antibody-secreting plasma cell, reflecting the concerted activation of proplasma cell transcriptional regulators, such as Blimp-1, IRF-4, and Xbp-1. Here, we show that the microphthalmia-associated transcription factor (Mitf) is highly expressed in naive B cells, where it antagonizes the process of terminal differentiation through the repression of IRF-4. Defective Mitf activity results in spontaneous B cell activation, antibody secretion, and autoantibody production. Conversely, ectopic Mitf expression suppresses the expression of IRF-4, the plasma cell marker CD138, and antibody secretion. Thus, Mitf regulates B cell homeostasis by suppressing the antibody-secreting fate.

2021 ◽  
Author(s):  
Ashley N. Barlev ◽  
Susan Malkiel ◽  
Annemarie L. Dorjée ◽  
Jolien Suurmond ◽  
Betty Diamond

AbstractFcγRIIB is an inhibitory receptor expressed throughout B cell development. Diminished expression or function is associated with lupus in mice and humans, in particular through an effect on autoantibody production and plasma cell differentiation. Here, we analysed the effect of B cell-intrinsic FcγRIIB expression on B cell activation and plasma cell differentiation.Loss of FcγRIIB on B cells (Fcgr2b cKO mice) led to a spontaneous increase in autoantibody titers. This increase was most striking for IgG3, suggestive of increased extrafollicular responses. Marginal zone (MZ) and IgG3+ B cells had the highest expression of FcγRIIB and the increase in serum IgG3 was linked to increased MZ B cell signaling and activation in the absence of FcγRIIB. Likewise, human circulating MZ-like B cells had the highest expression of FcγRIIB, and their activation was most strongly inhibited by engaging FcγRIIB. Finally, marked increases in IgG3+ plasma cells and B cells were observed during extrafollicular plasma cell responses with both T-dependent and T-independent antigens in Fcgr2b cKO mice. The increased IgG3 response following immunization of Fcgr2b cKO mice was lost in MZ-deficient Notch2/Fcgr2b cKO mice.Thus, we present a model where high FcγRIIB expression in MZ B cells prevents their hyperactivation and ensuing autoimmunity.Graphical abstract


2014 ◽  
Vol 192 (10) ◽  
pp. 4483-4486 ◽  
Author(s):  
John M. Lindner ◽  
Hiroyuki Kayo ◽  
Sebastian Hedlund ◽  
Yoko Fukuda ◽  
Taro Fukao ◽  
...  

Blood ◽  
2012 ◽  
Vol 119 (16) ◽  
pp. 3744-3756 ◽  
Author(s):  
Laurens P. Kil ◽  
Marjolein J. W. de Bruijn ◽  
Menno van Nimwegen ◽  
Odilia B. J. Corneth ◽  
Jan Piet van Hamburg ◽  
...  

Abstract On antigen binding by the B-cell receptor (BCR), B cells up-regulate protein expression of the key downstream signaling molecule Bruton tyrosine kinase (Btk), but the effects of Btk up-regulation on B-cell function are unknown. Here, we show that transgenic mice overexpressing Btk specifically in B cells spontaneously formed germinal centers and manifested increased plasma cell numbers, leading to antinuclear autoantibody production and systemic lupus erythematosus (SLE)–like autoimmune pathology affecting kidneys, lungs, and salivary glands. Autoimmunity was fully dependent on Btk kinase activity, because Btk inhibitor treatment (PCI-32765) could normalize B-cell activation and differentiation, and because autoantibodies were absent in Btk transgenic mice overexpressing a kinase inactive Btk mutant. B cells overexpressing wild-type Btk were selectively hyperresponsive to BCR stimulation and showed enhanced Ca2+ influx, nuclear factor (NF)–κB activation, resistance to Fas-mediated apoptosis, and defective elimination of selfreactive B cells in vivo. These findings unravel a crucial role for Btk in setting the threshold for B-cell activation and counterselection of autoreactive B cells, making Btk an attractive therapeutic target in systemic autoimmune disease such as SLE. The finding of in vivo pathology associated with Btk overexpression may have important implications for the development of gene therapy strategies for X-linked agammaglobulinemia, the immunodeficiency associated with mutations in BTK.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 527-527
Author(s):  
Yanwen Jiang ◽  
Katerina Hatzi ◽  
Olivier Elemento ◽  
Ari Melnick

Abstract Abstract 527 Antigen stimulation of naïve B cells (NBC) induces differentiation with a phenotype characterized by robust proliferation and genomic instability tolerance to enable activated germinal center B cells (GCB) to undergo immunoglobulin affinity maturation. Aberrant genetic events resulting from this process lead to malignant transformation and diffuse large B cell lymphoma (DLBCL). Phenotypic progression from quiescent NBC to activated GCB and malignant DLBCL involves major shifts in gene expression. Recent studies suggest that enhancers play a key role in mediating cell type-specific gene regulation. We therefore postulated that enhancers are involved in dictating the gene expression programs that govern normal and malignant B cell phenotypes; and systematic discovery of enhancers coupled with bioinformatic analysis would uncover key enhancer-binding transcription factors (TFs) that regulate these cell states. To test this hypothesis, we performed ChIP-seq on enhancer histone marks, i.e. H3K4me2, H3K27Ac, and H3K4me3, in primary NBC and GCB, and in DLBCL cell lines in biological replicates. We defined enhancers by the criterion of H3K4me2hiH3K4me3low. We observed a striking pattern of enhancer re-organization between cell types. First, we found a larger number of enhancers in primary B-cells (∼20,000) than in DLBCL (∼12,000). Second, we confirmed that enhancers are cell type-specific. For example, 11,492 out of 20,173 NBC enhancers were lost during transition to GCB (loss of H3K4me2 enrichment), while 13,088 new enhancers were gained in GCB. A similar phenomenon was also observed in DLBCL when compared to either NBC or GCB. This re-organization of enhancers suggests that cells may have dynamic gene regulatory programs during differentiation or malignant transformation. To discover TFs that act through enhancers, we used bioinformatic analyses, including FIRE and MEME, to search for TF consensus binding sequences within enhancers. Over-represented DNA motifs included motifs of SPI1, RUNX1, STAT3, RELA and SOX9, etc. SOX9 motif was significantly enriched in GCB specific enhancers (p=3.07e-15). SOX9 belongs to the SOX family TFs and plays an important role in cartilage development, sex determination, and intestinal differentiation but has not been implicated in B cell development. To investigate the role of SOX9 in B cell activation and malignant transformation, we first examined the expression of SOX9 in these cells. RNA-seq performed on human tonsilar NBC and GCB showed more than 20-fold increase of SOX9 mRNA in GCB as compared to NBC (6.75±0.80 vs 0.29±0.14, RPKM, p=0.0002). In addition, SOX9 expression was maintained in plasma B cells (2.88±0.49, RPKM). To understand how SOX9 regulates transcriptional programming in GCB, we performed SOX9 ChIP-seq in GCB to look for its targets. We found that SOX9 binds to 1,668 upstream distal enhancer regions (-5 to -100 kb of TSS) associated with 963 genes. These target genes were significantly enriched in many important pathways including cell cycle regulation (CCND2, CDC25B, CDK1), transcription regulation (BCOR, NCOR2), epigenetic regulation (BMI1, DNMT3A, MLL2, SUZ12, TET3), and MAPK signaling (MAP2K3, MAP3K7) (p<0.001). One of the SOX9 targets is PRMD1, a TF that controls the transition from GCB to plasma cells, suggesting that SOX9 may be involved in B cell terminal differentiation. To our surprise, we did not detect SOX9 mRNA in 10 out of 12 DLBCL cell lines by RNA-seq. Moreover, SOX9 was not expressed in the majority of primary malignant non-Hodgkin's lymphoma cases studied by IHC in the Human Protein Atlas project. To examine whether reduced SOX9 expression could induce malignant transformation, we used shRNA to knockdown Sox9 in mouse BCL1 lymphoma cells and subjected them to colony forming assay in semi-solid methylcellulose. Knockdown of Sox9 increased BCL1 colony forming ability by 50% as compared to scramble, suggesting that loss of SOX9 expression maybe important for lymphomagenesis. In summary, we identified a novel germinal center TF, SOX9, by examining enrichment of TF motifs within enhancer regions uncovered by ChIP-seq. Our current data suggest that SOX9 may play an important role in germinal center reaction and subsequent terminal differentiation by regulating key factors, such as PRDM1, and that loss of SOX9 may contribute to DLBCL malignant transformation by potentially blocking the terminal differentiation of mature GCB. Disclosures: No relevant conflicts of interest to declare.


2003 ◽  
Vol 198 (6) ◽  
pp. 937-945 ◽  
Author(s):  
Leonid Gorelik ◽  
Kevin Gilbride ◽  
Max Dobles ◽  
Susan L. Kalled ◽  
Daniel Zandman ◽  
...  

The cellular source of B cell activation factor (BAFF) required for peripheral B cell survival/maturation is unknown. To determine the nature of BAFF-producing cells we established and analyzed reciprocal bone marrow (BM) chimeras with wild-type (WT) and BAFF-deficient mice. The results revealed that BAFF production by radiation-resistant stromal cells is completely sufficient to provide a necessary signal for B cell survival/maturation, as BAFF−/− BM cells transferred into lethally irradiated WT mice gave rise to normal numbers of follicular (FO) and marginal zone (MZ) B cell subpopulations. On the other hand, transfer of WT BM into BAFF−/− lethally irradiated mice resulted only in minimal reconstitution of mature FO B cells and no restoration of MZ B cells. Thus, in the absence of BAFF+/+ stromal cells, BAFF production by BM-derived cells, presumably by macrophages, dendritic cells, and/or neutrophils, was not at all sufficient to support normal B cell homeostasis. Interestingly, immunization of both types of chimeras stimulated high levels of antigen-specific antibody secretion, indicating that either stromal cell– or hematopoietic cell–derived BAFF is sufficient for B cell antibody responses.


2020 ◽  
Author(s):  
Kathrin Klasener ◽  
Julia Jellusova ◽  
Geoffroy Andrieux ◽  
Ulrich Salzer ◽  
Chiara Boehler ◽  
...  

CD20 is a B cell specific membrane protein and a target of therapeutic antibodies such as rituximab (RTX). In spite of the prominent usage of anti-CD20 antibodies in the clinic little is known about the biological function of CD202. Here we show that CD20 controls the nanoscale organization of receptors on the surface of resting B lymphocytes. A CRISPR/Cas-based ablation of CD20 in Ramos B cells results in a relocalisation of the IgM B cell antigen receptor (IgM-BCR) and the co-receptor CD19. The resulting IgM-BCR/CD19 signaling synapse leads to transient B cell activation followed by plasma cell differentiation. Similarly to CD20-deficient Ramos cells, naive human B cells treated with rituximab in vitro or isolated from patients during rituximab administration display hallmarks of transient activation characterized by the formation of the IgM-BCR/CD19 signaling synapse, followed by CD19 and IgM-BCR downregulation. Moreover, increased expression of specific plasma cell genes can be observed after rituximab treatment in relapsed CLL patients. In summary we identify CD20 as a gatekeeper of the resting state on human B cells and demonstrate that a disruption of the nanoscale organization of the B cell surface via CD20 deletion or anti-CD20 treatment profoundly alters B cell fate.


2009 ◽  
Vol 78 (2) ◽  
pp. 810-822 ◽  
Author(s):  
Marianne A. Bryan ◽  
Karen A. Norris

ABSTRACT Trypanosoma cruzi is the etiologic agent of Chagas' disease. Acute T. cruzi infection results in polyclonal B-cell activation and delayed specific humoral immunity. T. cruzi proline racemase (TcPRAC), a T. cruzi B-cell mitogen, may contribute to this dysfunctional humoral response. Stimulation of murine splenocytes with recombinant protein (rTcPRAC) induced B-cell proliferation, antibody secretion, interleukin-10 (IL-10) production, and upregulation of CD69 and CD86 on B cells. Marginal zone (MZ) B cells are more responsive to T-cell-independent (TI) rTcPRAC stimulation than are follicular mature (FM) B cells in terms of proliferation, antibody secretion, and IL-10 production. During experimental T. cruzi infection, TcPRAC-specific IgG remained undetectable when responses to other T. cruzi antigens developed. Conversely, intradermal genetic immunization via gene gun (GG) delivered TcPRAC as an immunogen, generating high-titer TcPRAC-specific IgG without B-cell dysfunction. TcPRAC GG immunization led to antigen-specific splenic memory B-cell and bone marrow plasma cell formation. TcPRAC-specific IgG bound mitogenic rTcPRAC, decreasing subsequent B-cell activation. GG immunization with rTcPRAC DNA was nonmitogenic and did not affect the generation of specific IgG to another T. cruzi antigen, complement regulatory protein (CRP). These data demonstrate the utility of genetic immunization for the conversion of a protein mitogen to an effective antigen. Furthermore, coimmunization of TcPRAC with another T. cruzi antigen indicates the usefulness of this approach for multivalent vaccine development.


Blood ◽  
1997 ◽  
Vol 89 (8) ◽  
pp. 2901-2908 ◽  
Author(s):  
Asimah Rafi ◽  
Mitzi Nagarkatti ◽  
Prakash S. Nagarkatti

Abstract CD44 is a widely distributed cell surface glycoprotein whose principal ligand has been identified as hyaluronic acid (HA), a major component of the extracellular matrix (ECM). Recent studies have demonstrated that activation through CD44 leads to induction of effector function in T cells and macrophages. In the current study, we investigated whether HA or monoclonal antibodies (MoAbs) against CD44 would induce a proliferative response in mouse lymphocytes. Spleen cells from normal and nude, but not severe combined immunodeficient mice, exhibited strong proliferative responsiveness to stimulation with soluble HA or anti-CD44 MoAbs. Furthermore, purified B cells, but not T cells, were found to respond to HA. HA was unable to stimulate T cells even in the presence of antigen presenting cells (APC) and was unable to act as a costimulus in the presence of mitogenic or submitogenic concentrations of anti-CD3 MoAbs. In contrast, stimulation of B cells with HA in vitro, led to B-cell differentiation as measured by production of IgM antibodies in addition to increased expression of CD44 and decreased levels of CD45R. The fact that the B cells were responding directly to HA through its binding to CD44 and not to any contaminants or endotoxins was demonstrated by the fact that F(ab)2 fragments of anti-CD44 MoAbs or soluble CD44 fusion proteins could significantly inhibit the HA-induced proliferation of B cells. Also, HA-induced proliferation of B cells was not affected by the addition of polymixin B, and B cells from lipopolysaccharide (LPS)-unresponsive C3H/HeJ strain responded strongly to stimulation with HA. Furthermore, HA, but not chondroitin-sulfate, another major component of the ECM, induced B-cell activation. It was also noted that injection of HA intraperitoneally, triggered splenic B cell proliferation in vivo. Together, the current study demonstrates that interaction between HA and CD44 can regulate murine B-cell effector functions and that such interactions may play a critical role during normal or autoimmune responsiveness of B cells.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 1046.1-1046
Author(s):  
L. Schlicher ◽  
P. Kulig ◽  
M. Murphy ◽  
M. Keller

Background:Cenerimod is a potent, selective, and orally active sphingosine 1-phosphate receptor 1 (S1P1) modulator that is currently being evaluated in a Phase 2b study in patients with systemic lupus erythematosus (SLE) (NCT03742037). S1P1 receptor modulators sequester circulating lymphocytes within lymph nodes, thereby reducing pathogenic autoimmune cells (including B lymphocytes) in the blood stream and in inflamed tissues. Extensive clinical experience has become available for the nonselective S1P receptor modulator fingolimod in relapsing forms of multiple sclerosis, supporting this therapeutic concept for the treatment of autoimmune disorders.Objectives:Although the effect of S1P-receptor modulators in reducing peripheral B cells is well documented1,2, the role of the S1P1 receptor on this cell type is only incompletely understood. In this study, the mode of action of cenerimod on primary human B cells was investigated in a series of in vitro experiments, including S1P1 receptor cell surface expression and chemotaxis towards S1P. Moreover, S1P1 expression following B cell activation in vitro was studied. As glucocorticoids (GC) are frequently used in the treatment of patients with autoimmune disorders including SLE, the potential influence of GC on the mode of action of cenerimod was evaluated.Methods:Primary human B lymphocytes from healthy donors were isolated from whole blood. In one set of experiments, cells were treated with different concentrations of cenerimod to measure S1P1 receptor internalization by flow cytometry. In a second set of experiments, isolated B cells were activated using different stimuli or left untreated. Cells were then analysed for S1P1 and CD69 cell surface expression and tested in a novel real-time S1P-mediated migration assay. In addition, the effect of physiological concentrations of GCs (prednisolone and prednisone) on cenerimod activity in preventing S1P mediated migration was tested.Results:In vitro, cenerimod led to a dose-dependent internalization of the S1P1 receptor on primary human B lymphocytes. Cenerimod also blocked migration of nonactivated and activated B lymphocytes towards S1P in a concentration-dependent manner, which is in line with the retention of lymphocytes in the lymph node and the reduction of circulating lymphocytes observed in the clinical setting. Upon B cell activation, which was monitored by CD69 upregulation, a simultaneous downregulation of S1P1 expression was detected, leading to less efficient S1P-directed cell migration. Importantly, physiological concentrations of GC did not affect the inhibitory activity of cenerimod on B cell migration.Conclusion:These results show that cenerimod, by modulating S1P1, blocks B lymphocyte migration towards its natural chemoattractant S1P and demonstrate compatibility of cenerimod with GC. These results are consistent with results of comparable experiments done previously using primary human T lymphocytes.References:[1]Nakamura M et al., Mult Scler. 2014 Sep; 20(10):1371-80.[2]Strasser DS et al., RMD Open 2020;6:e001261.Disclosure of Interests:None declared


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A744-A744
Author(s):  
Tingting Zhong ◽  
Zhaoliang Huang ◽  
Xinghua Pang ◽  
Na Chen ◽  
Xiaoping Jin ◽  
...  

BackgroundCD73 (ecto-5’-nucleotidase) is an ecto-nucleotidase that dephosphorylate AMP to form adenosine. Activation of adenosine signaling pathway in immune cells leads to the suppression of effector functions, down-regulate macrophage phagocytosis, inhibit pro-inflammatory cytokine release, as well as yield aberrantly differentiated dendritic cells producing pro-tumorigenic molecules.1 In the tumor microenvironment, adenosinergic negative feedback signaling facilitated immune suppression is considered an important mechanism for immune evasion of cancer cells.2 3 Combination of CD73 and anti-PD-1 antibody has shown promising activity in suppressing tumor growth. Hence, we developed AK119, an anti- human CD73 monoclonal antibody, and AK123,a bi-specific antibody targeting both PD-1 and CD73 for immune therapy of cancer.MethodsAK119 is a humanized antibody against CD73 and AK123 is a tetrameric bi-specific antibody targeting PD-1 and CD73. Binding assays of AK119 and AK123 to antigens, and antigen expressing cells were performed by using ELISA, Fortebio, and FACS assays. In-vitro assays to investigate the activity of AK119 and AK123 to inhibit CD73 enzymatic activity in modified CellTiter-Glo assay, to induce endocytosis of CD73, and to activate B cells were performed. Assay to evaluate AK123 activity on T cell activation were additionally performed. Moreover, the activities of AK119 and AK123 to mediate ADCC, CDC in CD73 expressing cells were also evaluated.ResultsAK119 and AK123 could bind to its respective soluble or membrane antigens expressing on PBMCs, MDA-MB-231, and U87-MG cells with high affinity. Results from cell-based assays indicated that AK119 and AK123 effectively inhibited nucleotidase enzyme activity of CD73, mediated endocytosis of CD73, and induced B cell activation by upregulating CD69 and CD83 expression on B cells, and showed more robust CD73 blocking and B cell activation activities compared to leading clinical candidate targeting CD73. AK123 could also block PD-1/PD-L1 interaction and enhance T cell activation.ConclusionsIn summary, AK119 and AK123 represent good preclinical biological properties, which support its further development as an anti-cancer immunotherapy or treating other diseases.ReferencesDeaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, Chen JF, Enjyoji K, Linden J, Oukka M, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 2007; 204:1257–65.Huang S, Apasov S, Koshiba M, Sitkovsky M. Role of A2a extracellular adenosine receptor-mediated signaling in adenosine-mediated inhibition of T-cell activation and expansion. Blood. 1997; 90:1600–10.Novitskiy SV, Ryzhov S, Zaynagetdinov R, Goldstein AE, Huang Y, Tikhomirov OY, Blackburn MR, Biaggioni I,Carbone DP, Feoktistov I, et al. Adenosine receptors in regulation of dendritic cell differentiation and function. Blood 2008; 112:1822–31.


Sign in / Sign up

Export Citation Format

Share Document