scholarly journals IL-31–IL-31R interactions negatively regulate type 2 inflammation in the lung

2007 ◽  
Vol 204 (3) ◽  
pp. 481-487 ◽  
Author(s):  
Jacqueline G. Perrigoue ◽  
Ji Li ◽  
Colby Zaph ◽  
Michael Goldschmidt ◽  
Phillip Scott ◽  
...  

Interleukin (IL) 31Rα (glycoprotein 130–like monocyte receptor and glycoprotein 130–like receptor) heterodimerizes with oncostatin M receptor β to bind IL-31, a cytokine expressed preferentially by CD4+ T helper type 2 (Th2) cells. However, the functions of IL-31–IL-31R signaling in immune regulation remain unknown. Here, we identify a novel role for IL-31R in limiting type 2 inflammation in the lung. After intravenous injection of Schistosoma mansoni eggs, IL-31Rα−/− mice developed severe pulmonary inflammation, characterized by an increase in the area of granulomatous inflammation, increased numbers of resistin-like molecule α+ cells, and enhanced collagen deposition compared to WT counterparts. In vitro, macrophages generated from IL-31Rα−/− mice promoted enhanced ovalbumin-specific CD4+ T cell proliferation and purified naive CD4+ T cells from IL-31Rα−/− mice exhibited enhanced proliferation and expression of Th2 cytokines, identifying a T cell– and macrophage-intrinsic regulatory function for IL-31R signaling. In contrast, the generation of CD4+ T cell–mediated Th1 responses were normal in IL-31Rα−/− mice, suggesting that the regulatory role of IL-31R signaling is limited to type 2 responses. Together, these data implicate IL-31R signaling as a novel negative regulatory pathway that specifically limits type 2 inflammation.

2009 ◽  
Vol 206 (4) ◽  
pp. 937-952 ◽  
Author(s):  
Meera G. Nair ◽  
Yurong Du ◽  
Jacqueline G. Perrigoue ◽  
Colby Zaph ◽  
Justin J. Taylor ◽  
...  

Differentiation and recruitment of alternatively activated macrophages (AAMacs) are hallmarks of several inflammatory conditions associated with infection, allergy, diabetes, and cancer. AAMacs are defined by the expression of Arginase 1, chitinase-like molecules, and resistin-like molecule (RELM) α/FIZZ1; however, the influence of these molecules on the development, progression, or resolution of inflammatory diseases is unknown. We describe the generation of RELM-α–deficient (Retnla−/−) mice and use a model of T helper type 2 (Th2) cytokine-dependent lung inflammation to identify an immunoregulatory role for RELM-α. After challenge with Schistosoma mansoni (Sm) eggs, Retnla−/− mice developed exacerbated lung inflammation compared with their wild-type counterparts, characterized by excessive pulmonary vascularization, increased size of egg-induced granulomas, and elevated fibrosis. Associated with increased disease severity, Sm egg–challenged Retnla−/− mice exhibited elevated expression of pathogen-specific CD4+ T cell–derived Th2 cytokines. Consistent with immunoregulatory properties, recombinant RELM-α could bind to macrophages and effector CD4+ Th2 cells and inhibited Th2 cytokine production in a Bruton's tyrosine kinase–dependent manner. Additionally, Retnla−/− AAMacs promoted exaggerated antigen-specific Th2 cell differentiation. Collectively, these data identify a previously unrecognized role for AAMac-derived RELM-α in limiting the pathogenesis of Th2 cytokine-mediated pulmonary inflammation, in part through the regulation of CD4+ T cell responses.


Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Arvind Batra ◽  
Besir Okur ◽  
Rainer Glauben ◽  
Ulrike Erben ◽  
Jakob Ihbe ◽  
...  

Abstract Besides being mandatory in the metabolic system, adipokines like leptin directly affect immunity. Leptin was found to be necessary in T helper 1 (Th1)-dependent inflammatory processes, whereas effects on Th2 cells are rarely understood. Here, we focused on leptin in T-helper cell polarization and in Th2-mediated intestinal inflammation in vivo. The induction of cytokine-producing Th1 or Th2 cells from naive CD4+ T cells under polarizing conditions in vitro was generally decreased in cells from leptin-deficient ob/ob mice compared with wild-type mice. To explore the in vivo relevance of leptin in Th2-mediated inflammation, the model of oxazolone-induced colitis was employed in wild-type, ob/ob, and leptin-reconstituted ob/ob mice. Ob/ob mice were protected, whereas wild-type and leptin-reconstituted ob/ob mice developed colitis. The disease severity went in parallel with local production of the Th2 cytokine IL-13. A possible explanation for the protection of ob/ob mice in Th1- as well as in Th2-dependent inflammation is provided by a decreased expression of the key transcription factors for Th1 and Th2 polarization, T-bet and GATA-3, in naive ob/ob T cells. In conclusion, these results support the regulatory function of the adipokine leptin within T-cell polarization and thus in the acquired immune system and support the concept that there is a close interaction with the endocrine system.


Blood ◽  
2011 ◽  
Vol 117 (4) ◽  
pp. 1218-1227 ◽  
Author(s):  
Xiongfei Xu ◽  
Zhenhong Guo ◽  
Xueyu Jiang ◽  
Yushi Yao ◽  
Qiangguo Gao ◽  
...  

Abstract The heterogeneity and mechanisms for the generation of CD4 memory T (CD4 Tm) cells remain elusive. Distinct subsets of dendritic cells (DCs) have been found to regulate a distinct T-helper (Th)–cell subset differentiation by influencing cytokine cues around CD4 T cells; however, whether and how the regulatory DC subset can regulate Tm-cell differentiation remains unknown. Further, there is no ideal in vitro experimental system with which to mimic the 3 phases of the CD4 T-cell immune response (expansion, contraction, memory generation) and/or to culture CD4 Tm cells for more than a month. By analyzing CD4 T cells programmed by long-term coculture with regulatory DCs, we identified a population of long-lived CD4 T cells with a CD44hiCD62L−CCR7− effector memory phenotype and rapid, preferential secretion of the Th2 cytokines interleukin-4 (IL-4), IL-5, IL-10, and IL-13 after antigenic stimulation. These regulatory DC-programmed Tm cells suppress CD4 T-cell activation and proliferation in vitro via IL-10 and inhibit the delayed-type hypersensitivity response once infused in vivo. We also identify their natural counterpart, which is up-regulated by regulatory DC transfusion and negatively regulates the recall response in vivo. Different from interferon-γ–producing conventional Tm cells, these IL-4–producing CD4 Tm cells act as alternative Tm cells with a regulatory function, suggesting a new way of negative immune regulation by memory T cells.


2018 ◽  
Author(s):  
Tharsan Kanagalingam ◽  
Meerah Vijeyakumaran ◽  
Nami Shrestha Palikhe ◽  
Lauren Solomon ◽  
Harissios Vliagoftis ◽  
...  

ABSTRACTBackgroundInhaled glucocorticosteroids (GCs) are the main treatment for asthma as they reduce type 2 cytokine (IL-4, IL-5 and IL-13) expression and induce apoptosis. Asthma severity is associated with GC insensitivity, increased type 2 inflammation and circulating Th2 cells. Since IL-2 is a T cell survival factor, we assessed whether IL-2 levels associate with the proportion of Th2 cells and/or correlate with clinical features of asthma severity.MethodsPeripheral blood from asthma patients (n=18) was obtained and Th2 cell numbers determined by flow cytometry. Peripheral blood cells were activated with mitogen (24hrs) and supernatant levels of IL-2 and IL-13 measured by ELISA. In vitro differentiated Th2 cells were treated with dexamethasone and IL-2 and assessed for apoptosis by flow cytometry staining of Annexin V. Level of mRNA for anti-apoptotic (BCL-2) and pro-apoptotic (BIM) genes as well as IL-13 were determined by qRT-PCR.ResultsIL-2 produced by activated peripheral blood cells correlated negatively with lung function (FEV1) and positively with daily dose of inhaled GC. When patients were stratified based on IL-2 level, high IL-2 producers made more IL-13 and had more circulating Th2 cells. In vitro, increasing the level of IL-2 in the culture media was associated with resistance to DEX-induced apoptosis, more BCL-2 and less BIM mRNA. Th2 cells cultured with higher IL-2 also had more IL-13 mRNA and required higher concentrations of DEX for cytokine suppression.Conclusions and Clinical RelevanceIL-2 modulates Th2 cell responses to GC, supporting both their survival and pro-inflammatory capacity, suggesting that a patient’s potential to produce IL-2 may be a determinant in asthma severity.


Author(s):  
Nami Shrestha Palikhe ◽  
Meerah Vijeyakumaran ◽  
Jenna Fortunato ◽  
Lauren Solomon ◽  
Harissios Vliagoftis ◽  
...  

Background: Type 2-high asthma is characterized by elevated levels of circulating Th2 cells and eosinophils, cells that express chemoattractant-homologous receptor expressed on Th2 cells (CRTh2). Severe asthma is more common in women than men; however, the underlying mechanism(s) remain elusive. Here we examined whether the relationship between severe asthma and type 2 inflammation differs by sex and if estrogen influences Th2 cell response to glucocorticoid (GC). Methods: Type 2 inflammation and the proportion of blood Th2 cells (CD4 CRTh2 ) were assessed in whole blood from subjects with asthma (n = 66). The effects of GC and estrogen receptor alpha (ERα) agonist on in vitro differentiated Th2 cells were examined. Expression of CRTh2, type 2 cytokines and degree of apoptosis (Annexin V , 7-AAD) were determined by flow cytometry, qRT-PCR, western blot and ELISA. Results: In severe asthma, the proportion of circulating Th2 cells and hospitalizations were higher in women than men. Women with severe asthma also had more Th2 cells and serum IL-13 than women with mild/moderate asthma. Th2 cells, eosinophils and CRTh2 mRNA correlated with clinical characteristics associated with asthma control in women but not men. In vitro, GC and ERα agonist treated Th2 cells exhibited less apoptosis, more CRTh2 as well as IL-5 and IL-13 following CRTh2 activation than Th2 cells treated with GC alone. Conclusion: Women with severe asthma had higher levels of circulating Th2 cells than men, which may be due to estrogen modifying the effects of GC, enhancing Th2 cell survival and type 2 cytokine production. (249)


2012 ◽  
Vol 6 (1) ◽  
pp. 57-68 ◽  
Author(s):  
Jessica M. S. Jutzy ◽  
Salma Khan ◽  
Malyn May Asuncion-Valenzuela ◽  
Terry-Ann M. Milford ◽  
Kimberly J. Payne ◽  
...  

2005 ◽  
Vol 25 (23) ◽  
pp. 10533-10542 ◽  
Author(s):  
Marc-Werner Dobenecker ◽  
Christian Schmedt ◽  
Masato Okada ◽  
Alexander Tarakhovsky

ABSTRACT Regulation of Src family kinase (SFK) activity is indispensable for a functional immune system and embryogenesis. The activity of SFKs is inhibited by the presence of the carboxy-terminal Src kinase (Csk) at the cell membrane. Thus, recruitment of cytosolic Csk to the membrane-associated SFKs is crucial for its regulatory function. Previous studies utilizing in vitro and transgenic models suggested that the Csk-binding protein (Cbp), also known as phosphoprotein associated with glycosphingolipid microdomains (PAG), is the membrane adaptor for Csk. However, loss-of-function genetic evidence to support this notion was lacking. Herein, we demonstrate that the targeted disruption of the cbp gene in mice has no effect on embryogenesis, thymic development, or T-cell functions in vivo. Moreover, recruitment of Csk to the specialized membrane compartment of “lipid rafts” is not impaired by Cbp deficiency. Our results indicate that Cbp is dispensable for the recruitment of Csk to the membrane and that another Csk adaptor, yet to be discovered, compensates for the loss of Cbp.


Sign in / Sign up

Export Citation Format

Share Document