scholarly journals IL-7 and IL-15 independently program the differentiation of intestinal CD3−NKp46+ cell subsets from Id2-dependent precursors

2010 ◽  
Vol 207 (2) ◽  
pp. 273-280 ◽  
Author(s):  
Naoko Satoh-Takayama ◽  
Sarah Lesjean-Pottier ◽  
Paulo Vieira ◽  
Shinichiro Sawa ◽  
Gerard Eberl ◽  
...  

The natural cytotoxicity receptor NKp46 (encoded by Ncr1) was recently shown to identify a subset of noncytotoxic, Rag-independent gut lymphocytes that express the transcription factor Rorc, produce interleukin (IL)-22, and provide innate immune protection at the intestinal mucosa. Intestinal CD3−NKp46+ cells are phenotypically heterogeneous, comprising a minority subset that resembles classical mature splenic natural killer (NK) cells (NK1.1+, Ly49+) but also a large CD127+NK1.1− subset of lymphoid tissue inducer (LTi)–like Rorc+ cells that has been proposed to include NK cell precursors. We investigated the developmental relationships between these intestinal CD3−NKp46+ subsets. Gut CD3−NKp46+ cells were related to LTi and NK cells in requiring the transcriptional inhibitor Id2 for normal development. Overexpression of IL-15 in intestinal epithelial cells expanded NK1.1+ cells within the gut but had no effect on absolute numbers of the CD127+NK1.1−Rorc+ subset of CD3−NKp46+ cells. In contrast, IL-7 deficiency strongly reduced the overall numbers of CD3−NKp46+NK1.1− cells that express Rorc and produce IL-22 but failed to restrict homeostasis of classical intestinal NK1.1+ cells. Finally, in vivo fate-mapping experiments demonstrated that intestinal NK1.1+CD127− cells are not the progeny of Rorc-expressing progenitors, indicating that CD127+NK1.1−Rorc+ cells are not canonical NK cell precursors. These studies highlight the independent cytokine regulation of functionally diverse intestinal NKp46+ cell subsets.

Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3647-3653 ◽  
Author(s):  
Todd A. Fehniger ◽  
William E. Carson ◽  
Ewa Mrózek ◽  
Michael A. Caligiuri

Abstract The administration of low dose interleukin-2 (IL-2) results in a selective expansion of natural killer (NK) cells in vivo, and promotes the differentiation of NK cells from hematopoietic precursor cells in vitro. We have previously shown that stem cell factor (SCF ), the ligand to the c-kit tyrosine kinase receptor, enhances IL-2–induced NK cell proliferation and differentiation in vitro. Here, we investigated the effects of SCF plus IL-2 delivered to mice in vivo. Eight-week-old C57BL/6 mice were treated with a continuous subcutaneous infusion of IL-2 (1 × 104 IU/d) plus a daily intraperitoneal dose of SCF (100 μg/kg/d), IL-2 alone, SCF alone, or vehicle alone for 8 weeks. The in vivo serum concentration of IL-2 ranged between 352 ± 12.0 pg/mL and 606 ± 9.0 pg/mL, achieving selective saturation of the high affinity IL-2 receptor, while the peak SCF serum concentration was 296 ± 13.09 ng/mL. Alone, the daily administration of SCF had no effect on the expansion of NK cells. The continuous infusion of IL-2 alone did result in a significant expansion of NK1.1+CD3− cells compared to mice treated with placebo or SCF. However, mice treated with both SCF and IL-2 showed an increase in the absolute number of NK cells that was more than twofold that seen with IL-2 alone, in the spleen (P ≤ .005), bone marrow (P ≤ .025), and blood (P < .05). NK cytotoxic activity against YAC-1 target cells was significantly higher for mice treated with SCF plus IL-2, compared to mice treated with IL-2 alone (P ≤ .0005). Interferon-γ (IFN-γ) production in cytokine-activated splenocytes was also greater for the SCF plus IL-2 group, over IL-2 treatment alone (P ≤ .01). The effect of SCF plus IL-2 on NK cell expansion was likely mediated via NK cell precursors, rather than mature NK cells. In summary, we provide the first evidence that SCF can significantly enhance expansion of functional NK cells induced by the prolonged administration of low dose IL-2 in vivo. Since the NK cell is a cytotoxic innate immune effector and a potent source of IFN-γ, this therapeutic strategy for NK cell expansion may serve to further enhance innate immune surveillance against malignant transformation and infection in the setting of cancer and/or immunodeficiency.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 210-210 ◽  
Author(s):  
Chen Xilin ◽  
Jianfeng Han ◽  
Chu Jianhong ◽  
Walter Meisen ◽  
Zhang Jianying ◽  
...  

Abstract Natural killer (NK) cells are innate lymphocytes that can rapidly eradicate tumor cells, especially those lacking MHC Class I molecules. NK cells can also rapidly eradicate herpes virus-infected cells. We designed an oncolytic herpes virus (oHSV) to selectively infect, replicate within, and lyse glioblastoma (GBM), a devastating brain tumor with a median survival of only 15 months following diagnosis. We have shown that the rapid influx of NK cells limits oHSV efficacy in GBM as they impede oHSV replication and spread [Alvarez-Breckenridge et al., Nat Med, 2012, 18(12):1827-34]. In the current study, we developed NK cell-based novel GBM therapies by decreasing the brain influx of NK cells to enhance the efficacy of oHSV, while arming NK cells in the brain with a chimeric antigen receptor (CAR) that targets both the wild-type EGFR and its mutant form EGFRvIII, two GBM tumor-associated antigens. We then investigated the synergistic effects between EGFR-CAR NK cells and oHSV. Transforming growth factor (TGF)-β is a potent immunosuppressive cytokine of NK cells [Yu et al, Immunity, 2006, 24(5):575-90]. We first determined if oHSV efficacy for treatment of GBM would be augmented by inhibiting anti-oHSV activity of NK cells with TGF-β pre-treatment. In vitro, NK cells pre-treated with TGF-β displayed less cytolytic capacity against oHSV-infected GBM cell lines and patient-derived GBM stem-like cells. In viral replication assays, co-culturing oHSV-infected GBM cells with NK cells pre-treated with TGF-β significantly increased virus titers. In an immunocompetent syngeneic GBM mouse model,administration of TGF-β to GBM-bearing mice prior to oHSV injection significantly inhibited intracranial infiltration and activation of NK cells (P < 0.05). In orthotopic human GBM xenograft mouse models and in syngeneic GBM mouse models, TGF-β treatment in vivo prior to oHSV therapy resulted in inhibition of NK cell infiltration, suppression of tumor growth and significantly prolonged survival of GBM-bearing mice (P < 0.05). Furthermore, depletion of NK cells incompletely blocked the positive effects of in vivo treatment of GBM with TGF-β on survival, suggesting that TGF-β may also directly act on other innate immune cells such as macrophages/microglia. These data demonstrate a single dose of TGF-β prior to oHSV administration enhances anti-tumor efficacy for GBM at least in part through the transient inhibition of the innate immune responses to oHSV infection. We next investigated whether NK cell activity could be enhanced to more directly target brain tumors while sparing eradication of oHSV. We therefore infected both human NK-92 cells and primary human NK cells to express the second generation CAR targeting both EGFR and EGFRvIII that we designed. Further, we asked if the treatment with EGFR-CAR NK cells plus oHSV could create a therapeutic synergy for the treatment to brain tumors. In vitro, compared with mock-transduced CAR-NK-cells, EGFR-CAR NK cells exhibited significantly higher cytotoxicity and IFN-γ production when co-cultured with tumor cells, for both NK-92 and primary NK cells (P < 0.01). Further, significantly higher cytolytic activity against tumor cells was obtained when CAR NK cells were combined with oHSV-1 infection of tumor cells, compared to either of the monotherapies alone (P < 0.05). In mice, to avoid oHSV clearance by the EGFR-CAR NK cells following the inoculation of the mouse with tumor cells, we administered these two agents sequentially; administering EGFR-CAR NK cells directly into the tumor first as a single injection of 2 × 106 cells, followed by intracranial infection with 2 × 105 plaque-forming units oHSV five days later, presumably after EGFR-CAR NK survival has diminished. Compared to vehicle controls, intracranial administration of either EGFR-CAR NK cells or oHSV blunted tumor growth. However, the combination of EGFR-CAR NK cells followed by oHSV infection resulted in significantly more efficient killing of tumor cells (P < 0.05) and significantly longer survival for tumor-bearing mice when compared to either monotherapy alone. Collectively, our studies demonstrate that in animal tumor models, we can combine novel NK cell and oHSV therapies to significantly improve survival. Disclosures No relevant conflicts of interest to declare.


2006 ◽  
Vol 80 (9) ◽  
pp. 4286-4291 ◽  
Author(s):  
Eva Szomolanyi-Tsuda ◽  
Xueya Liang ◽  
Raymond M. Welsh ◽  
Evelyn A. Kurt-Jones ◽  
Robert W. Finberg

ABSTRACT Natural killer (NK) cells are essential for the early control of murine cytomegalovirus (MCMV) infection. Here, we demonstrate that toll-like receptor 2 (TLR2) plays a role in the NK cell-mediated control of MCMV. TLR2 knockout (KO) mice had elevated levels of MCMV in the spleen and liver on day 4 postinfection compared to C57BL/6 mice. In vivo depletion of NK cells with anti-NK1.1 antibodies, however, eliminated the differences in viral titers between the two groups, suggesting that the effect of TLR2 on MCMV clearance on day 4 was NK cell mediated. The defect in early antiviral control was associated with a decreased NK cell population in the spleen and liver and reduced amounts of interleukin-18 and α/β interferon secreted in the TLR2 KO mice. Our studies suggest that in addition to the reported involvement of TLR9 and TLR3, TLR2 is also involved in innate immune responses to MCMV infection.


2019 ◽  
Vol 2 (2) ◽  
pp. e201800195 ◽  
Author(s):  
Masashi Matsuda ◽  
Rintaro Ono ◽  
Tomonori Iyoda ◽  
Takaho Endo ◽  
Makoto Iwasaki ◽  
...  

The immune system encompasses acquired and innate immunity that matures through interaction with microenvironmental components. Cytokines serve as environmental factors that foster functional maturation of immune cells. Although NOD/SCID/IL2rgKO (NSG) humanized mice support investigation of human immunity in vivo, a species barrier between human immune cells and the mouse microenvironment limits human acquired as well as innate immune function. To study the roles of human cytokines in human acquired and innate immune cell development, we created NSG mice expressing hIL-7 and hIL-15. Although hIL-7 alone was not sufficient for supporting human NK cell development in vivo, increased frequencies of human NK cells were confirmed in multiple organs of hIL-7 and hIL-15 double knockin (hIL-7xhIL-15 KI) NSG mice engrafted with human hematopoietic stem cells. hIL-7xhIL-15 KI NSG humanized mice provide a valuable in vivo model to investigate development and function of human NK cells.


2005 ◽  
Vol 202 (1) ◽  
pp. 181-192 ◽  
Author(s):  
Coralie Bloch-Queyrat ◽  
Marie-Claude Fondanèche ◽  
Riyan Chen ◽  
Luo Yin ◽  
Francis Relouzat ◽  
...  

SAP is an adaptor protein that is expressed in NK and T cells. It is mutated in humans who have X-linked lymphoproliferative (XLP) disease. By interacting with SLAM family receptors, SAP enables tyrosine phosphorylation signaling of these receptors by its ability to recruit the Src-related kinase, Fyn. Here, we analyzed the role of SAP in NK cell functions using the SAP-deficient mouse model. Our results showed that SAP was required for the ability of NK cells to eliminate tumor cells in vitro and in vivo. This effect strongly correlated with expression of CD48 on tumor cells, the ligand of 2B4, a SLAM-related receptor expressed in NK cells. In keeping with earlier reports that studied human NK cells, we showed that SAP was necessary for the ability of 2B4 to trigger cytotoxicity and IFN-γ secretion. In the absence of SAP, 2B4 function was shifted toward inhibition of NK cell–mediated cytotoxicity. By analyzing mice lacking Fyn, we showed that similarly to SAP, Fyn was strictly required for 2B4 function. Taken together, these results provide evidence that the 2B4-SAP-Fyn cascade defines a potent activating pathway of natural cytotoxicity. They also could help to explain the high propensity of patients who have XLP disease to develop lymphoproliferative disorders.


2010 ◽  
Vol 84 (19) ◽  
pp. 10121-10130 ◽  
Author(s):  
Devin B. Lowe ◽  
Michael H. Shearer ◽  
Joel F. Aldrich ◽  
Richard E. Winn ◽  
Cynthia A. Jumper ◽  
...  

ABSTRACT We examined properties of the innate immune response against the tumor-specific antigen simian virus 40 (SV40) large tumor antigen (Tag) following experimental pulmonary metastasis in naive mice. Approximately 14 days after mKSA tumor cell challenge, expression of inflammatory mediators such as tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), and RANTES was upregulated in splenocytes harvested from mice, as assessed by flow cytometry and antibody array assays. This response was hypothesized to activate and induce tumor-directed NK cell lysis since IL-2-stimulated NK cells mediated tumor cell destruction in vitro. The necessary function of NK cells was further validated in vivo through selected antibody depletion of NK cells, which resulted in an overwhelming lung tumor burden relative to that in animals receiving a control rabbit IgG depletion regimen. Interestingly, mice achieved increased protection from experimental pulmonary metastasis when NK cells were further activated indirectly through in vivo administration of poly(I:C), a Toll-like receptor 3 (TLR3) agonist. In a separate study, mice receiving treatments of poly(I:C) and recombinant SV40 Tag protein immunization mounted effective tumor immunity in an established experimental pulmonary metastasis setting. Initiating broad-based immunity with poly(I:C) was observed to induce a Th1 bias in the SV40 Tag antibody response that led to successful antitumor responses not observed in animals treated only with poly(I:C) or SV40 Tag. These data have direct implications for immunotherapeutic strategies incorporating methods to elicit inflammatory reactions, particularly NK cell-driven lysis, against malignant cell types that express a tumor-specific antigen such as SV40 Tag.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 463-463 ◽  
Author(s):  
Maria Berg ◽  
Andreas Lundqvist ◽  
Dawn Betters ◽  
Richard W. Childs

Abstract Abstract 463 IL-2 activates NK cell enhancing their capacity to lyse tumor cells. To date, most clinical studies of adoptive NK cell transfer have utilized short-term (12-16 hours) IL-2-activated NK cells. Because IL-2 alone is ineffective in expanding NK cells in vitro, the relatively low numbers of NK cells obtained for infusion following short term IL-2 activation may limit the full therapeutic impact of this approach. To obtain larger numbers of NK cells, novel ex vivo expansion protocols that utilize irradiated EBV-LCL or K562 feeder cells have recently been developed. However, concerns exist that extensive ex vivo expansion might significantly reduce the in vivo proliferative potential and long-term viability of adoptively transferred NK cells. Here we investigated for differences in phenotype, tumor cytotoxicity and in vivo persistence between short-term IL-2 activated and long-term expanded NK cells. CD56+/CD3- NK cells were isolated from normal donors by immuno-magnetic bead selection and were either activated with IL-2 (500U/ml) for 12-16 hours or were expanded in vitro over 14 days using irradiated EBV-LCL feeder cells in IL-2 containing media (500U/ml). Short-term IL-2 activated NK cells did not expand in number in contrast to EBV-LCL stimulated NK cells which expanded 400-1000 fold by culture day 14. Flow cytometry analysis revealed no differences in expression of DNAM-1, 2B4, LFA-1 or granzyme B between short-term activated and expanded NK cells. However, expanded NK cells had significantly higher expression of TRAIL, NKG2D, and the natural cytotoxicity receptors NKp30, NKp44 and NKp46 and a slight increase in KIR3DL1 and KIR2DL2/3. A 4-hour 51Cr-release assay showed expanded NK cells were significantly more cytotoxic against K562 cell compared to short-term IL-2 activated NK cells; at a 1:1 effector to target ratio, 67±6%, 26±1%, and 9±1% of K562 cells were killed by expanded, short term IL-2 activated and fresh NK cells respectively (p<0.05). Increased TRAIL expression on expanded NK cells was also associated with increased lysis of TRAIL-sensitive tumor cells (RCC tumors treated with bortezomib); at a 1:1 E:T ratio, 55±3% and 5±2% of bortezomib-treated RCC tumors were killed by expanded and short-term IL-2 activated NK cells respectively (p<0.05). We next assessed for differences in the in vivo longevity of these NK cell populations when transferred into immuno-deficient mice. Two million NK cells were labeled with a near infrared-dye (DiR; 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide) and injected intra-peritoneal (i.p.) into CB.17 SCID-beige mice. Mice were administered IL-2 (100,000U/ml bid i.p.) for five days then underwent bioluminescent imaging using the IVIS100 system. Although FACS analysis of NK cells performed immediately prior to injection showed increased DiR fluorescent intensity in short-term IL-2 activated vs. expanded NK cells, fluorescence signal in vivo was slightly higher in the first 24-96 hours in mice that received expanded NK cells; fluorescence intensity was 5-41% (p=0.003) stronger in recipients of expanded NK cells compared to mice receiving short-term IL-2 activated NK cells. We next evaluated the in vivo anti-tumor effects of activated vs. expanded NK cells. CB.17 SCID-beige mice were injected i.p. with luciferase transduced 526 human melanoma cells three days prior to receiving an i.p. injection of short term IL-2 activated vs. expanded NK cells (+ bid i.p. IL-2). Bioluminescent imaging measuring tumor flux to calculate tumor burden and tumor doubling time showed no difference in tumor progression between both NK cell cohorts. In conclusion, these results demonstrate that ex vivo expanded NK cells are phenotypically and functionally different than short-term IL-2 activated NK cells. Expanded NK cells have increased expression of natural cytotoxicity receptors, NKG2D and TRAIL and have greater TRAIL-mediated tumor cytotoxicity compared to IL-2 activated NK cells. Importantly, despite extensive ex vivo proliferation, expanded NK cells appear maintain similar longevity in vivo as non-expanded short term IL-2 activated NK cells. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 27 (3) ◽  
pp. 212-229
Author(s):  
Arosh Shavinda Perera Molligoda Arachchige

NK cells are the major lymphocyte subset of the innate immune system that mediates antiviral and anti-tumor responses. It is well established that they develop mechanisms to distinguish self from non-self during the process of NK cell education. Unlike T and B cells, natural killer cells lack clonotypic receptors and are activated after recognizing their target via germline-encoded receptors through natural cytotoxicity, cytokine stimulation, and Ab-dependent cellular cytotoxicity. Subsequently, they utilize cytotoxic granules, death receptor ligands, and cytokines to perform their effector functions. In this review, we provide a general overview of human NK cells, as opposed to murine NK cells, discussing their ontogeny, maturation, receptor diversity, types of responses, and effector functions. Furthermore, we also describe recent advances in human NK cell biology, including tissue-resident NK cell populations, NK cell memory, and novel approaches used to target NK cells in cancer immunotherapy.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 263
Author(s):  
Philip Rosenstock ◽  
Thomas Kaufmann

Sialic acids are sugars with a nine-carbon backbone, present on the surface of all cells in humans, including immune cells and their target cells, with various functions. Natural Killer (NK) cells are cells of the innate immune system, capable of killing virus-infected and tumor cells. Sialic acids can influence the interaction of NK cells with potential targets in several ways. Different NK cell receptors can bind sialic acids, leading to NK cell inhibition or activation. Moreover, NK cells have sialic acids on their surface, which can regulate receptor abundance and activity. This review is focused on how sialic acids on NK cells and their target cells are involved in NK cell function.


Sign in / Sign up

Export Citation Format

Share Document