scholarly journals The SIRPα–CD47 immune checkpoint in NK cells

2021 ◽  
Vol 218 (3) ◽  
Author(s):  
Tobias Deuse ◽  
Xiaomeng Hu ◽  
Sean Agbor-Enoh ◽  
Moon K. Jang ◽  
Malik Alawi ◽  
...  

Here we report on the existence and functionality of the immune checkpoint signal regulatory protein α (SIRPα) in NK cells and describe how it can be modulated for cell therapy. NK cell SIRPα is up-regulated upon IL-2 stimulation, interacts with target cell CD47 in a threshold-dependent manner, and counters other stimulatory signals, including IL-2, CD16, or NKG2D. Elevated expression of CD47 protected K562 tumor cells and mouse and human MHC class I–deficient target cells against SIRPα+ primary NK cells, but not against SIRPα− NKL or NK92 cells. SIRPα deficiency or antibody blockade increased the killing capacity of NK cells. Overexpression of rhesus monkey CD47 in human MHC-deficient cells prevented cytotoxicity by rhesus NK cells in a xenogeneic setting. The SIRPα–CD47 axis was found to be highly species specific. Together, the results demonstrate that disruption of the SIRPα–CD47 immune checkpoint may augment NK cell antitumor responses and that elevated expression of CD47 may prevent NK cell–mediated killing of allogeneic and xenogeneic tissues.

Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1802
Author(s):  
Nayoung Kim ◽  
Mi Yeon Kim ◽  
Woo Seon Choi ◽  
Eunbi Yi ◽  
Hyo Jung Lee ◽  
...  

Natural killer (NK) cells are innate cytotoxic lymphocytes that provide early protection against cancer. NK cell cytotoxicity against cancer cells is triggered by multiple activating receptors that recognize specific ligands expressed on target cells. We previously demonstrated that glycogen synthase kinase (GSK)-3β, but not GSK-3α, is a negative regulator of NK cell functions via diverse activating receptors, including NKG2D and NKp30. However, the role of GSK-3 isoforms in the regulation of specific ligands on target cells is poorly understood, which remains a challenge limiting GSK-3 targeting for NK cell-based therapy. Here, we demonstrate that GSK-3α rather than GSK-3β is the primary isoform restraining the expression of NKG2D ligands, particularly ULBP2/5/6, on tumor cells, thereby regulating their susceptibility to NK cells. GSK-3α also regulated the expression of the NKp30 ligand B7-H6, but not the DNAM-1 ligands PVR or nectin-2. This regulation occurred independently of BCR-ABL1 mutation that confers tyrosine kinase inhibitor (TKI) resistance. Mechanistically, an increase in PI3K/Akt signaling in concert with c-Myc was required for ligand upregulation in response to GSK-3α inhibition. Importantly, GSK-3α inhibition improved cancer surveillance by human NK cells in vivo. Collectively, our results highlight the distinct role of GSK-3 isoforms in the regulation of NK cell reactivity against target cells and suggest that GSK-3α modulation could be used to enhance tumor cell susceptibility to NK cells in an NKG2D- and NKp30-dependent manner.


2014 ◽  
Vol 89 (1) ◽  
pp. 97-109 ◽  
Author(s):  
Shayarana L. Gooneratne ◽  
Jonathan Richard ◽  
Wen Shi Lee ◽  
Andrés Finzi ◽  
Stephen J. Kent ◽  
...  

ABSTRACTMany attempts to design prophylactic human immunodeficiency virus type 1 (HIV-1) vaccines have focused on the induction of neutralizing antibodies (Abs) that block infection by free virions. Despite the focus on viral particles, virus-infected cells, which can be found within mucosal secretions, are more infectious than free virus bothin vitroandin vivo. Furthermore, assessment of human transmission couples suggests infected seminal lymphocytes might be responsible for a proportion of HIV-1 transmissions. Although vaccines that induce neutralizing Abs are sought, only some broadly neutralizing Abs efficiently block cell-to-cell transmission of HIV-1. As HIV-1 vaccines need to elicit immune responses capable of controlling both free and cell-associated virus, we evaluated the potential of natural killer (NK) cells to respond in an Ab-dependent manner to allogeneic T cells bearing HIV-1 antigens. This study presents data measuring Ab-dependent anti-HIV-1 NK cell responses to primary and transformed allogeneic T-cell targets. We found that NK cells are robustly activated in an anti-HIV-1 Ab-dependent manner against allogeneic targets and that tested target cells are subject to Ab-dependent cytolysis. Furthermore, the educated KIR3DL1+NK cell subset from HLA-Bw4+individuals exhibits an activation advantage over the KIR3DL1−subset that contains both NK cells educated through other receptor/ligand combinations and uneducated NK cells. These results are intriguing and important for understanding the regulation of Ab-dependent NK cell responses and are potentially valuable for designing Ab-dependent therapies and/or vaccines.IMPORTANCENK cell-mediated anti-HIV-1 antibody-dependent functions have been associated with protection from infection and disease progression; however, their role in protecting from infection with allogeneic cells infected with HIV-1 is unknown. We found that HIV-1-specific ADCC antibodies bound to allogeneic cells infected with HIV-1 or coated with HIV-1 gp120 were capable of activating NK cells and/or trigging cytolysis of the allogeneic target cells. This suggests ADCC may be able to assist in preventing infection with cell-associated HIV-1. In order to fully utilize NK cell-mediated Ab-dependent effector functions, it might also be important that educated NK cells, which hold the highest activation potential, can become activated against targets bearing HIV-1 antigens and expressing the ligands for self-inhibitory receptors. Here, we show that with Ab-dependent stimulation, NK cells expressing inhibitory receptors can mediate robust activation against targets expressing the ligands for those receptors.


1997 ◽  
Vol 185 (12) ◽  
pp. 2053-2060 ◽  
Author(s):  
Ennio Carbone ◽  
Giuseppina Ruggiero ◽  
Giuseppe Terrazzano ◽  
Carmen Palomba ◽  
Ciro Manzo ◽  
...  

NK recognition is regulated by a delicate balance between positive signals initiating their effector functions, and inhibitory signals preventing them from proceeding to cytolysis. Knowledge of the molecules responsible for positive signaling in NK cells is currently limited. We demonstrate that IL-2–activated human NK cells can express CD40 ligand (CD40L) and that recognition of CD40 on target cells can provide an activation pathway for such human NK cells. CD40-transfected P815 cells were killed by NK cell lines expressing CD40L, clones and PBLderived NK cells cultured for 18 h in the presence of IL-2, but not by CD40L-negative fresh NK cells. Cross-linking of CD40L on IL-2–activated NK cells induced redirected cytolysis of CD40-negative but Fc receptor-expressing P815 cells. The sensitivity of human TAP-deficient T2 cells could be blocked by anti-CD40 antibodies as well as by reconstitution of TAP/MHC class I expression, indicating that the CD40-dependent pathway for NK activation can be downregulated, at least in part, by MHC class I molecules on the target cells. NK cell recognition of CD40 may be important in immunoregulation as well as in immune responses against B cell malignancies.


1993 ◽  
Vol 178 (4) ◽  
pp. 1321-1336 ◽  
Author(s):  
V Litwin ◽  
J Gumperz ◽  
P Parham ◽  
J H Phillips ◽  
L L Lanier

Prior studies using polyclonal populations of natural killer (NK) cells have revealed that expression of certain major histocompatibility complex (MHC) class I molecules on the membrane of normal and transformed hematopoietic target cells can prevent NK cell-mediated cytotoxicity. However, the extent of clonal heterogeneity within the NK cell population and the effect of self versus non-self MHC alleles has not been clearly established. In the present study, we have generated more than 200 independently derived human NK cell clones from four individuals of known human histocompatibility leukocyte antigens (HLA) type. NK clones were analyzed for cytolytic activity against MHC class I-deficient Epstein Barr virus (EBV) transformed B lymphoblastoid cell lines (B-LCL) stably transfected with several HLA-A, -B, or -C genes representing either self or non-self alleles. All NK clones killed the prototypic HLA-negative erythroleukemia K562 and most lysed the MHC class I-deficient C1R and 721.221 B-LCL. Analysis of the panel of HLA-A, -B, and -C transfectants supported the following general conclusions. (a) Whereas recent studies have suggested that HLA-C antigens may be preferentially recognized by NK cells, our findings indicate that 70% or more of all NK clones are able to recognize certain HLA-B alleles and many also recognize HLA-A alleles. Moreover, a single NK clone has the potential to recognize multiple alleles of HLA-A, HLA-B, and HLA-C antigens. Thus, HLA-C is not unique in conferring protection against NK lysis. (b) No simple patterns of HLA specificity emerged. Examination of a large number of NK clones from a single donor revealed overlapping, yet distinct, patterns of reactivity when a sufficiently broad panel of HLA transfectants was examined. (c) Both autologous and allogeneic HLA antigens were recognized by NK clones. There was neither evidence for deletion of NK clones reactive with self alleles nor any indication for an increased frequency of NK clones recognizing self alleles. (d) With only a few exceptions, protection conferred by transfection of HLA alleles into B-LCL was usually not absolute. Rather a continuum from essentially no protection for certain alleles (HLA-A*0201) to very striking protection for other alleles (HLA-B*5801), with a wide range of intermediate effects, was observed. (e) Whereas most NK clones retained a relatively stable HLA specificity, some NK clones demonstrated variable and heterogeneous activity over time. (f) NK cell recognition and specificity cannot be explained entirely by the presence or absence of HLA class I antigens on the target cell.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 994-1002 ◽  
Author(s):  
Anouk Caraux ◽  
Nayoung Kim ◽  
Sarah E. Bell ◽  
Simona Zompi ◽  
Thomas Ranson ◽  
...  

AbstractPhospholipase C-γ2 (PLC-γ2) is a key component of signal transduction in leukocytes. In natural killer (NK) cells, PLC-γ2 is pivotal for cellular cytotoxicity; however, it is not known which steps of the cytolytic machinery it regulates. We found that PLC-γ2-deficient NK cells formed conjugates with target cells and polarized the microtubule-organizing center, but failed to secrete cytotoxic granules, due to defective calcium mobilization. Consequently, cytotoxicity was completely abrogated in PLC-γ2-deficient cells, regardless of whether targets expressed NKG2D ligands, missed self major histocompatibility complex (MHC) class I, or whether NK cells were stimulated with IL-2 and antibodies specific for NKR-P1C, CD16, CD244, Ly49D, and Ly49H. Defective secretion was specific to cytotoxic granules because release of IFN-γ on stimulation with IL-12 was normal. Plcg2-/- mice could not reject MHC class I-deficient lymphoma cells nor could they control CMV infection, but they effectively contained Listeria monocytogenes infection. Our results suggest that exocytosis of cytotoxic granules, but not cellular polarization toward targets, depends on intracellular calcium rise during NK cell cytotoxicity. In vivo, PLC-γ2 regulates selective facets of innate immunity because it is essential for NK cell responses to malignant and virally infected cells but not to bacterial infections.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 583-583 ◽  
Author(s):  
Theresa Placke ◽  
Hans-Georg Kopp ◽  
Martin Schaller ◽  
Gundram Jung ◽  
Lothar Kanz ◽  
...  

Abstract Abstract 583 NK cells are a central component of the cytotoxic lymphocyte compartment capable of lysing tumor cells without prior immune sensitization of the host. The mechanisms leading to activation of NK reactivity are described by the principles of ‘missing-self' and ‘induced-self', which imply that cells with a low or absent expression of MHC class I (‘missing-self') and/or a stress-induced expression of ligands of activating NK receptors like e.g. NKG2D (‘induced-self') are preferentially recognized and eliminated by NK cells. Thus, a balance of various activating and inhibitory signals determines whether NK cell responses are initiated or not. Tumor cells often downregulate expression of MHC class I to evade T cell-mediated immune surveillance, which results in enhanced NK susceptibility. Besides the direct interaction with their target cells, NK activity is further influenced by the reciprocal interplay with various other hematopoietic cells. We and others demonstrated previously that thrombocytopenia inhibits metastasis in murine models, which is reversed by additional depletion of NK cells (e.g., Jin et al., Nature Med. 2006, Palumbo et al., Blood 2005). However, the mechanisms by which platelets impair NK-tumor interaction are largely unclear, especially in humans. Recently we reported that platelets release TGF-β upon interaction with tumor cells causing downregulation of NKG2D on NK cells, which impairs anti-tumor immunity by disturbing the principle of “induced self” (Kopp et al., Cancer Res. 2009). Here we demonstrate that platelets further enable tumor cells to evade NK cell immune surveillance by preventing detection of “missing self”: We found that tumor cells rapidly get coated in the presence of platelets, the latter expressing large amounts of MHC class I on their surface. In case of MHC class I-negative or -low cancer cells, this process results in MHC class I “pseudoexpression” on the tumor cell surface as revealed by flow cytometry, immunofluorescent staining, and electron microscopy. Platelet-derived MHC class I was found to inhibit the reactivity of autologous NK, both upon activation with cytokines and, most importantly, in cultures with platelet-coated tumor cells. Using constitutively MHC class I-negative/low tumor cells we found that blocking MHC class I restored NK cytotoxicity and IFN-γ production against platelet-coated tumor cells, but did not alter NK reactivity against the tumor cells in the absence of coating platelets. Taken together, our data indicate that platelets enable a molecular mimicry of tumor cells, allowing the latter to downregulate MHC class I in order to escape T cell immunity without inducing sufficient NK tumor immune surveillance due to conferred platelet-mediated “pseudo self”. Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 190 (7) ◽  
pp. 1005-1012 ◽  
Author(s):  
Mikael Eriksson ◽  
Guenther Leitz ◽  
Erik Fällman ◽  
Ove Axner ◽  
James C. Ryan ◽  
...  

Inhibitory receptors expressed on natural killer (NK) cells abrogate positive signals upon binding corresponding major histocompatibility complex (MHC) class I molecules on various target cells. By directly micromanipulating the effector–target cell encounter using an optical tweezers system which allowed temporal and spatial control, we demonstrate that Ly49–MHC class I interactions prevent characteristic cellular responses in NK cells upon binding to target cells. Furthermore, using this system, we directly demonstrate that an NK cell already bound to a resistant target cell may simultaneously bind and kill a susceptible target cell. Thus, although Ly49-mediated inhibitory signals can prevent many types of effector responses, they do not globally inhibit cellular function, but rather the inhibitory signal is spatially restricted towards resistant targets.


2007 ◽  
Vol 204 (12) ◽  
pp. 3027-3036 ◽  
Author(s):  
Galit Alter ◽  
Maureen P. Martin ◽  
Nickolas Teigen ◽  
William H. Carr ◽  
Todd J. Suscovich ◽  
...  

Decline of peak viremia during acute HIV-1 infection occurs before the development of vigorous adaptive immunity, and the level of decline correlates inversely with the rate of AIDS progression, implicating a potential role for the innate immune response in determining disease outcome. The combined expression of an activating natural killer (NK) cell receptor, the killer immunoglobulin-like receptor (KIR) 3DS1, and its presumed ligand, human leukocyte antigen (HLA)–B Bw4-80I, has been associated in epidemiological studies with a slow progression to AIDS. We examined the functional ability of NK cells to differentially control HIV-1 replication in vitro based on their KIR and HLA types. NK cells expressing KIR3DS1 showed strong, significant dose- and cell contact–dependent inhibition of HIV-1 replication in target cells expressing HLA-B Bw4-80I compared with NK cells that did not express KIR3DS1. Furthermore, KIR3DS1+ NK cells and NKLs were preferentially activated, and lysed HIV-1 infected target cells in an HLA-B Bw4-80I–dependent manner. These data provide the first functional evidence that variation at the KIR locus influences the effectiveness of NK cell activity in the containment of viral replication.


2002 ◽  
Vol 196 (11) ◽  
pp. 1403-1414 ◽  
Author(s):  
Jakob Michaëlsson ◽  
Cristina Teixeira de Matos ◽  
Adnane Achour ◽  
Lewis L. Lanier ◽  
Klas Kärre ◽  
...  

Human histocompatibility leukocyte antigen (HLA)-E is a nonclassical major histocompatibility complex (MHC) class I molecule which presents a restricted set of nonameric peptides, derived mainly from the signal sequence of other MHC class I molecules. It interacts with CD94/NKG2 receptors expressed on the surface of natural killer (NK) cells and T cell subsets. Here we demonstrate that HLA-E also presents a peptide derived from the leader sequence of human heat shock protein 60 (hsp60). This peptide gains access to HLA-E intracellularly, resulting in up-regulated HLA-E/hsp60 signal peptide cell-surface levels on stressed cells. Notably, HLA-E molecules in complex with the hsp60 signal peptide are no longer recognized by CD94/NKG2A inhibitory receptors. Thus, during cellular stress an increased proportion of HLA-E molecules may bind the nonprotective hsp60 signal peptide, leading to a reduced capacity to inhibit a major NK cell population. Such stress induced peptide interference would gradually uncouple CD94/NKG2A inhibitory recognition and provide a mechanism for NK cells to detect stressed cells in a peptide-dependent manner.


2019 ◽  
Vol 8 (10) ◽  
pp. 1667 ◽  
Author(s):  
Emilio Sanseviero

Immunotherapy has revolutionized the treatment of cancer patients. Among immunotherapeutic approaches, antibodies targeting immune checkpoint inhibitors Programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are approved for treatment of metastatic melanoma and are in clinical trials for a variety of other cancers. The contribution of Natural Killer (NK) cells to the efficacy of immune checkpoint inhibitors is becoming more evident. Enhancing both T and NK cell function in cancer could result in a robust and durable response. Along with the ability to directly kill tumor cells, NK cells can mediate antibody-dependent cellular cytotoxicity (ADCC) given the expression of Fragment Crystallizable (Fc) receptors. Promising novel antibodies modified with improved Fc-receptor-mediated functions or Fc-engagers to kill target cells have been tested in pre-clinical models with considerable results. Combination therapies with immune-therapeutic antibodies with enhancers of NK-cell Fc-receptor-mediated function can be exploited to increase the efficacy of these antibodies. Herein, I discuss possible strategies to improve the success of immunotherapy by boosting NK cell function.


Sign in / Sign up

Export Citation Format

Share Document