scholarly journals Block of N-type Calcium Channels in Chick Sensory Neurons by External Sodium

1997 ◽  
Vol 109 (6) ◽  
pp. 693-702 ◽  
Author(s):  
Luis Polo-Parada ◽  
Stephen J. Korn

L-type Ca2+ channels select for Ca2+ over sodium Na+ by an affinity-based mechanism. The prevailing model of Ca2+ channel permeation describes a multi-ion pore that requires pore occupancy by at least two Ca2+ ions to generate a Ca2+ current. At [Ca2+] < 1 μM, Ca2+ channels conduct Na+. Due to the high affinity of the intrapore binding sites for Ca2+ relative to Na+, addition of μM concentrations of Ca2+ block Na+ conductance through the channel. There is little information, however, about the potential for interaction between Na+ and Ca2+ for the second binding site in a Ca2+ channel already occupied by one Ca2+. The two simplest possibilities, (a) that Na+ and Ca2+ compete for the second binding site or (b) that full time occupancy by one Ca2+ excludes Na+ from the pore altogether, would imply considerably different mechanisms of channel permeation. We are studying permeation mechanisms in N-type Ca2+ channels. Similar to L-type Ca2+ channels, N-type channels conduct Na+ well in the absence of external Ca2+. Addition of 10 μM Ca2+ inhibited Na+ conductance by 95%, and addition of 1 mM Mg2+ inhibited Na+ conductance by 80%. At divalent ion concentrations of 2 mM, 120 mM Na+ blocked both Ca2+ and Ba2+ currents. With 2 mM Ba2+, the IC50 for block of Ba2+ currents by Na+ was 119 mM. External Li+ also blocked Ba2+ currents in a concentration-dependent manner, with an IC50 of 97 mM. Na+ block of Ba2+ currents was dependent on [Ba2+]; increasing [Ba2+] progressively reduced block with an IC50 of 2 mM. External Na+ had no effect on voltage-dependent activation or inactivation of the channel. These data suggest that at physiological concentrations, Na+ and Ca2+ compete for occupancy in a pore already occupied by a single Ca2+. Occupancy of the pore by Na+ reduced Ca2+ channel conductance, such that in physiological solutions, Ca2+ channel currents are between 50 and 70% of maximal.

1990 ◽  
Vol 259 (1) ◽  
pp. C56-C68 ◽  
Author(s):  
Y. Segal ◽  
L. Reuss

The apical membrane of Necturus gallbladder epithelium contains a voltage-activated K+ conductance [Ga(V)]. Large-conductance (maxi) K+ channels underlie Ga(V) and account for 17% of the membrane conductance (Ga) under control conditions. We examined the Ba2+, tetraethylammonium (TEA+), and quinine sensitivities of Ga and single maxi K+ channels. Mucosal Ba2+ addition decreased resting Ga in a concentration-dependent manner (65% block at 5 mM) and decreased Ga(V) in a concentration- and voltage-dependent manner. Mucosal TEA+ addition also decreased control Ga (60% reduction at 5 mM). TEA+ block of Ga(V) was more potent and less voltage dependent that Ba2+ block. Maxi K+ channels were blocked by external Ba2+ at millimolar levels and by external TEA+ at submillimolar levels. At 0.3 mM, quinine (mucosal addition) hyperpolarized the cell membranes by 6 mV and reduced the fractional apical membrane resistance by 50%, suggesting activation of an apical membrane K+ conductance. At 1 mM, quinine both activated and blocked K(+)-conductive pathways. Quinine blocked maxi K+ channel currents at submillimolar concentrations. We conclude that 1) Ba2+ and TEA+ block maxi K+ channels and other K+ channels underlying resting Ga; 2) parallels between the Ba2+ and TEA+ sensitivities of Ga(V) and maxi K+ channels support a role for these channels in Ga(V); and 3) quinine has multiple effects on K(+)-conductive pathways in gallbladder epithelium, which are only partially explained by block of apical membrane maxi K+ channels.


1989 ◽  
Vol 257 (4) ◽  
pp. C607-C611 ◽  
Author(s):  
A. Wallnofer ◽  
C. Cauvin ◽  
T. W. Lategan ◽  
U. T. Ruegg

ATP stimulated 45Ca2+ influx in rat aortic smooth muscle cells in a concentration-dependent manner (EC50 = 3.6 +/- 0.5 X 10(-7) M). ADP and GTP were less effective than ATP in stimulating 45Ca2+ influx; AMP was weakly active and the adenosine agonist 5'-(N-ethyl-carboxamido)-adenosine (NECA) had no effect. ATP gamma S was about equieffective with ATP, whereas alpha,beta-methylene-ATP (APCPP) did not induce 45Ca2+ influx. Stimulation of 45Ca2+ influx by ATP was not abolished by the dihydropyridine Ca2+ channel antagonist darodipine (PY 108-068), which completely blocked depolarization-induced 45Ca2+ influx. Inorganic cations (La3+, Cd2+, Co2+, Ni2+, Mn2+, and Mg2+) were able to inhibit both agonist- and depolarization-induced 45Ca2+ influx. Cd2+, however, was approximately 20 times more selective in blocking K+-stimulated than agonist-stimulated 45Ca2+ influx. These data indicate that ATP-stimulated Ca2+ influx in rat aortic smooth muscle cells is resistant to darodipine but is reduced by La3+, Cd2+, and other inorganic blockers of Ca2+ channels.


1977 ◽  
Author(s):  
K. Subbarao ◽  
B. Rucinski ◽  
A. Summers ◽  
S. Niewiarowski

The interactions of dipyridamole with α1-acid glycoprotein of plasma and with human platelets are related to inhibition of adenosine uptake by platelets. One mole of dipyridamole binds to one mole of α1-acid glycoprotein with a dissociation constant (Kd) of 1.3 μM. It was found that platelets contain both high and low affinity binding sites for the drug. The binding of dipyridamole to the high affinity sites follows a Michaelis Menten binding pattern with a Kd of 0.04 μM. Approximately 2x104 dipyridamole molecules are bound at the high affinity sites of each platelet. The lower affinity sites bind the drug with a Kd of 4 μM. In the presence of α1acid glycoprotein the binding of dipyridamole to platelets is inhibited. Correspondingly, the dipyridamole inhibition of adenosine uptake by platelets is reduced 1000-fold by α1acid glycoprotein. Binding of dipyridamole to human platelets is essential for its inhibition of adenosine uptake by platelets. Dipyridamole reduced the [14C]-ATP to [14C]-ADP ratio in the platelets. Purified α1acid glycoprotein reversed these effects of dipyridamole on adenosine metabolism of platelets in a concentration dependent manner. A correlationwas observed between the level of circulating dipyridamole in plasma and the inhibition of [14C]-adenosine uptake by platelets of PRP samples of 12 human volunteers given different amounts of dipyridamole. The in vitro and ex vivo effects of dipyridamole on the [14C]-adenosine uptake by platelets were found to be identical. Our data suggest the presence of dipyridamole binding sites in platelets that regulate adenosine transport across the cell surface.


1992 ◽  
Vol 263 (6) ◽  
pp. F1020-F1025 ◽  
Author(s):  
R. M. Edwards ◽  
M. Pullen ◽  
P. Nambi

The effects of endothelins (ET) on guanosine 3',5'-cyclic monophosphate (cGMP) levels in intact rat glomeruli were examined. ET-3 produced a rapid approximately fivefold increase in cGMP levels with the maximum effect occurring at 1 min. The ET-3-induced increase in cGMP accumulation occurred in the absence and presence of 3-isobutyl-1-methylxanthine. ET-1, ET-2, ET-3, and the structurally related toxin, sarafotoxin S6c, all increased glomerular cGMP levels in a concentration-dependent manner and with similar potencies (EC50 approximately 15-30 nM). The L-arginine analogue, N omega-nitro-L-arginine (L-NNA), reduced basal levels of cGMP and also totally inhibited ET-induced increases in cGMP as did methylene blue, an inhibitor of soluble guanylate cyclase. The effect of L-NNA was attenuated by L-arginine but not by D-arginine. The stimulation of cGMP accumulation by ET-3 was dependent on extracellular Ca2+ and was additive to atriopeptin III but not to acetylcholine. The ETA-selective antagonist, BQ 123, had no effect on ET-3-induced formation of cGMP. Glomerular membranes displayed high-affinity (Kd = 130-150 pM) and high-density (approximately 2.0 pmol/mg) binding sites for 125I-ET-1 and 125I-ET-3. ET-1, ET-3, and sarafotoxin S6c displaced 125I-ET-1 binding to glomerular membranes with similar affinities. BQ 123 had no effect on 125I-ET-1 binding. We conclude that ET increases cGMP levels in glomeruli by stimulating the formation of a nitric oxide-like factor that activates soluble guanylate cyclase. This effect of ET appears to be mediated by activation of ETB receptors and may serve to modulate the contractile effects of ET.


Blood ◽  
1999 ◽  
Vol 94 (4) ◽  
pp. 1429-1439 ◽  
Author(s):  
Yuji Yamaguchi ◽  
Hitoshi Nishio ◽  
Kenji Kishi ◽  
Steven J. Ackerman ◽  
Toshio Suda

Abstract Eosinophil granule major basic protein (MBP) is expressed exclusively in eosinophils and basophils in hematopoietic cells. In our previous study, we demonstrated a major positive regulatory role for GATA-1 and a negative regulatory role for GATA-2 in MBP gene transcription. Further analysis of the MBP promoter region identified a C/EBP (CCAAT/enhancer-binding protein) consensus binding site 6 bp upstream of the functional GATA-binding site in the MBP gene. In the cell line HT93A, which is capable of differentiating towards both the eosinophil and neutrophil lineages in response to retinoic acid (RA), C/EBP mRNA expression decreased significantly concomitant with eosinophilic and neutrophilic differentiation, whereas C/EBPβ expression was markedly increased. Electrophoretic mobility shift assays (EMSAs) showed that recombinant C/EBPβ protein could bind to the potential C/EBP-binding site (bp −90 to −82) in the MBP promoter. Furthermore, we have demonstrated that both C/EBPβ and GATA-1 can bind simultaneously to the C/EBP- and GATA-binding sites in the MBP promoter. To determine the functionality of both the C/EBP- and GATA-binding sites, we analyzed whether C/EBPβ and GATA-1 can stimulate the MBP promoter in the C/EBPβ and GATA-1 negative Jurkat T-cell line. Cotransfection with C/EBPβ and GATA-1 expression vectors produced a 5-fold increase compared with cotransfection with the C/EBPβ or GATA-1 expression vectors individually. In addition, GST pull-down experiments demonstrated a physical interaction between human GATA-1 and C/EBPβ. Expression of FOG (F̲riendo̲fG̲ATA), which binds to GATA-1 and acts as a cofactor for GATA-binding proteins, decreased transactivation activity of GATA-1 for the MBP promoter in a dose-dependent manner. Our results provide the first evidence that both GATA-1 and C/EBPβ synergistically transactivate the promoter of an eosinophil-specific granule protein gene and that FOG may act as a negative cofactor for the eosinophil lineage, unlike its positively regulatory function for the erythroid and megakaryocyte lineages.


1989 ◽  
Vol 257 (5) ◽  
pp. H1693-H1704
Author(s):  
C. F. Starmer ◽  
A. I. Undrovinas ◽  
F. Scamps ◽  
G. Vassort ◽  
V. V. Nesterenko ◽  
...  

The effect on calcium channels of the sodium channel antagonist, ethacizin, was studied in isolated frog ventricular cells using the whole cell voltage-clamp methodology. Ethacizin was found to block inward calcium current in a frequency-, voltage-, and concentration-dependent manner. The frequency-dependent blocking properties were modeled by considering the drug interaction with a voltage-dependent mixture of calcium channels harboring either an accessible or an inaccessible binding site. With repetitive stimulation, the pulse-to-pulse reduction in peak current is shown to be exponential, with a rate linearly related to the interstimulus interval and the drug concentration. Observed frequency- and concentration-dependent blocks were consistent with the predictions of the model, and mixture-specific rate constants were estimated from these data. The negligible shift in channel inactivation and the reduction of apparent binding and unbinding rates with more polarized membrane potentials imply the active moiety of ethacizin blocks open channels and is trapped within the channel at resting membrane potentials. The binding rate at 0 mV is similar to that observed in studies of interactions of other open channel blocking agents with voltage- and ligand-gated channels.


2002 ◽  
Vol 120 (3) ◽  
pp. 369-393 ◽  
Author(s):  
Richard J. Prince ◽  
Richard A. Pennington ◽  
Steven M. Sine

We used single-channel kinetic analysis to study the inhibitory effects of tacrine on human adult nicotinic receptors (nAChRs) transiently expressed in HEK 293 cells. Single channel recording from cell-attached patches revealed concentration- and voltage-dependent decreases in mean channel open probability produced by tacrine (IC50 4.6 μM at −70 mV, 1.6 μM at −150 mV). Two main effects of tacrine were apparent in the open- and closed-time distributions. First, the mean channel open time decreased with increasing tacrine concentration in a voltage-dependent manner, strongly suggesting that tacrine acts as an open-channel blocker. Second, tacrine produced a new class of closings whose duration increased with increasing tacrine concentration. Concentration dependence of closed-times is not predicted by sequential models of channel block, suggesting that tacrine blocks the nAChR by an unusual mechanism. To probe tacrine's mechanism of action we fitted a series of kinetic models to our data using maximum likelihood techniques. Models incorporating two tacrine binding sites in the open receptor channel gave dramatically improved fits to our data compared with the classic sequential model, which contains one site. Improved fits relative to the sequential model were also obtained with schemes incorporating a binding site in the closed channel, but only if it is assumed that the channel cannot gate with tacrine bound. Overall, the best description of our data was obtained with a model that combined two binding sites in the open channel with a single site in the closed state of the receptor.


2005 ◽  
Vol 289 (2) ◽  
pp. C425-C436 ◽  
Author(s):  
Bok Hee Choi ◽  
Jung-Ah Park ◽  
Kyung-Ryoul Kim ◽  
Ggot-Im Lee ◽  
Yong-Tae Lee ◽  
...  

The action of cytochalasins, actin-disrupting agents on human Kv1.5 channel (hKv1.5) stably expressed in Ltk− cells was investigated using the whole cell patch-clamp technique. Cytochalasin B inhibited hKv1.5 currents rapidly and reversibly at +60 mV in a concentration-dependent manner with an IC50 of 4.2 μM. Cytochalasin A, which has a structure very similar to cytochalasin B, inhibited hKv1.5 (IC50 of 1.4 μM at +60 mV). Pretreatment with other actin filament disruptors cytochalasin D and cytochalasin J, and an actin filament stabilizing agent phalloidin had no effect on the cytochalasin B-induced inhibition of hKv1.5 currents. Cytochalasin B accelerated the decay rate of inactivation for the hKv1.5 currents. Cytochalasin B-induced inhibition of the hKv1.5 channels was voltage dependent with a steep increase over the voltage range of the channel's opening. However, the inhibition exhibited voltage independence over the voltage range in which channels are fully activated. Cytochalasin B produced no significant effect on the steady-state activation or inactivation curves. The rate constants for association and dissociation of cytochalasin B were 3.7 μM/s and 7.5 s−1, respectively. Cytochalasin B produced a use-dependent inhibition of hKv1.5 current that was consistent with the slow recovery from inactivation in the presence of the drug. Cytochalasin B (10 μM) also inhibited an ultrarapid delayed rectifier K+ current ( IK,ur) in human atrial myocytes. These results indicate that cytochalasin B primarily blocks activated hKv1.5 channels and endogenous IK,ur in a cytoskeleton-independent manner as an open-channel blocker.


2005 ◽  
Vol 94 (1) ◽  
pp. 147-152 ◽  
Author(s):  
Vander Baptista ◽  
Wamberto Antonio Varanda

The nucleus of the tractus solitarius (NTS) plays an important role in the control of several autonomic reflex functions and has glutamate and GABA as main neurotransmitters. In this work, we used patch-clamp recordings in transverse slice preparations from rats to study whether the glycine binding site of the N-methyl-d-aspartate (NMDA) receptor is saturated or not in neurons of the subpostremal NTS. Except at hyperpolarized voltages and close to the reversal potential, glycine potentiated the NMDA responses in a concentration-dependent manner. The total charge transferred by glutamatergic currents was enhanced by glycine (500 μM; from 28 ± 13 to 42 ± 18 pC at +50 mV, n = 7, P < 0.05). Glycine increased the conductance of the postsynaptic membrane, without altering its reversal potential, both in the presence (from 2.4 ± 0.06 to 3.4 ± 0.09 nS; n = 7) and absence (from 3.1 ± 0.06 to 4.4 ± 0.10 nS; n = 8) of Mg2+ in the bathing solution. d-serine, in the presence of strychnine, also increased the amplitude of the NMDA component (by 68 ± 19%, P < 0.05, n = 5). The membrane potential was hyperpolarized (16 ± 6 mV, n = 8) by glycine, suggesting the presence of inhibitory glycinergic receptors. Our results indicate that the glycine site of the NMDA receptor in neurons of the subpostremal NTS is not saturated and that glycine may act as a modulator of the NMDA transmission in this nucleus.


1993 ◽  
Vol 264 (5) ◽  
pp. F845-F853
Author(s):  
M. M. Friedlaender ◽  
D. Jain ◽  
Z. Ahmed ◽  
D. Hart ◽  
R. L. Barnett ◽  
...  

Previous work from this laboratory has identified an endothelin (ET) type A (ETA) receptor on cultured rat renal medullary interstitial cells (RMIC), coupled to phosphatidylinositol-specific phospholipase C (PI-PLC), dihydropyridine-insensitive receptor-operated Ca2+ channels, and phospholipase A2. The current studies explored a role for ET stimulation of phosphatidylcholine-specific phospholipase D (PC-PLD) in intracellular signaling of this cell type. ET stimulated PLD activation, as measured by phosphatidic acid (PA) or phosphatidylethanol (PEt) accumulation, in a time- and concentration-dependent manner. Inhibition of diacylglycerol (DAG) kinase by ethylene glycol dioctanoate or 6-(2)4-[(4-fluorophenyl)-phenylmethylene]-1-piperadinyl]ethy l-7-methyl-5H - thiaxolo-[3,2-alpyrimidin]-5-one (R 59022) failed to blunt PA accumulation, indicating that PLD, and not DAG, was the source of PA. Inhibition of PA phosphohydrolase (PAP) by propranolol increased late accumulation of PA, suggesting that the prevailing metabolic flow was in the direction of PA to DAG. Phorbol 12-myristate 13-acetate (PMA) augmented ET-evoked PEt accumulation, whereas downregulation of protein kinase C (PKC) obviated agonist-induced PEt production. PMA augmentation of PLD activity proceeded independent of cytosolic free Ca2+ concentration. Ca2+ derived from either intracellular or extracellular sources enhanced ET-related PEt accumulation but was without effect in PKC-downregulated cells. Collectively, these observations indicate that ET stimulates PLD production in RMIC. PKC is the major regulator of this process, with Ca2+ playing a secondary, modulatory role. In addition, these data suggest that PC-PLD is coupled to the ETA receptor.


Sign in / Sign up

Export Citation Format

Share Document