scholarly journals Allosteric Effects of Permeating Cations on Gating Currents during K+ Channel Deactivation

1997 ◽  
Vol 110 (2) ◽  
pp. 87-100 ◽  
Author(s):  
Fred S.P. Chen ◽  
David Steele ◽  
David Fedida

K+ channel gating currents are usually measured in the absence of permeating ions, when a common feature of channel closing is a rising phase of off-gating current and slow subsequent decay. Current models of gating invoke a concerted rearrangement of subunits just before the open state to explain this very slow charge return from opening potentials. We have measured gating currents from the voltage-gated K+ channel, Kv1.5, highly overexpressed in human embryonic kidney cells. In the presence of permeating K+ or Cs+, we show, by comparison with data obtained in the absence of permeant ions, that there is a rapid return of charge after depolarizations. Measurement of off-gating currents on repolarization before and after K+ dialysis from cells allowed a comparison of off-gating current amplitudes and time course in the same cells. Parallel experiments utilizing the low permeability of Cs+ through Kv1.5 revealed similar rapid charge return during measurements of off-gating currents at ECs. Such effects could not be reproduced in a nonconducting mutant (W472F) of Kv1.5, in which, by definition, ion permeation was macroscopically absent. This preservation of a fast kinetic structure of off-gating currents on return from potentials at which channels open suggests an allosteric modulation by permeant cations. This may arise from a direct action on a slow step late in the activation pathway, or via a retardation in the rate of C-type inactivation. The activation energy barrier for K+ channel closing is reduced, which may be important during repetitive action potential spiking where ion channels characteristically undergo continuous cyclical activation and deactivation.

1997 ◽  
Vol 110 (5) ◽  
pp. 579-589 ◽  
Author(s):  
Riccardo Olcese ◽  
Ramón Latorre ◽  
Ligia Toro ◽  
Francisco Bezanilla ◽  
Enrico Stefani

Prolonged depolarization induces a slow inactivation process in some K+ channels. We have studied ionic and gating currents during long depolarizations in the mutant Shaker H4-Δ(6–46) K+ channel and in the nonconducting mutant (Shaker H4-Δ(6–46)-W434F). These channels lack the amino terminus that confers the fast (N-type) inactivation (Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1991. Neuron. 7:547–556). Channels were expressed in oocytes and currents were measured with the cut-open-oocyte and patch-clamp techniques. In both clones, the curves describing the voltage dependence of the charge movement were shifted toward more negative potentials when the holding potential was maintained at depolarized potentials. The evidences that this new voltage dependence of the charge movement in the depolarized condition is associated with the process of slow inactivation are the following: (a) the installation of both the slow inactivation of the ionic current and the inactivation of the charge in response to a sustained 1-min depolarization to 0 mV followed the same time course; and (b) the recovery from inactivation of both ionic and gating currents (induced by repolarizations to −90 mV after a 1-min inactivating pulse at 0 mV) also followed a similar time course. Although prolonged depolarizations induce inactivation of the majority of the channels, a small fraction remains non–slow inactivated. The voltage dependence of this fraction of channels remained unaltered, suggesting that their activation pathway was unmodified by prolonged depolarization. The data could be fitted to a sequential model for Shaker K+ channels (Bezanilla, F., E. Perozo, and E. Stefani. 1994. Biophys. J. 66:1011–1021), with the addition of a series of parallel nonconducting (inactivated) states that become populated during prolonged depolarization. The data suggest that prolonged depolarization modifies the conformation of the voltage sensor and that this change can be associated with the process of slow inactivation.


1985 ◽  
Vol 85 (4) ◽  
pp. 539-554 ◽  
Author(s):  
M M White ◽  
F Bezanilla

We have used data obtained from measurements of ionic and gating currents to study the process of K+ channel activation in squid giant axons. A marked improvement in the recording of K+ channel gating currents (IKg) was obtained by total replacement of Cl- in the external solution by NO-3, which eliminates approximately 50% of the Na+ channel gating current with no effect on IKg. The midpoint of the steady state charge-voltage (Qrel - V) relationship is approximately 40 mV hyperpolarized to that of the steady state activation (fo - V) curve, which is an indication that the channel has many nonconducting states. Ionic and gating currents have similar time constants for both ON and OFF pulses. This eliminates any Hodgkin-Huxley nx scheme for K+ channel activation. An interrupted pulse paradigm shows that the last step in the activation process is not rate limiting. IKg shows a nonartifactual rising phase, which indicates that the first step is either the slowest step in the activation sequence or is voltage independent. These data are consistent with the following general scheme for K+ channel activation: (formula; see text)


1989 ◽  
Vol 93 (2) ◽  
pp. 263-283 ◽  
Author(s):  
S Spires ◽  
T Begenisich

We have measured gating currents from the squid giant axon using solutions that preserve functional K channels and with experimental conditions that minimize Na channel contributions to these currents. Two pharmacological agents were used to identify a component of gating current that is associated with K channels. Low concentrations of internal Zn2+ that considerably slow K channel ionic currents with no effect on Na channel currents altered the component of gating current associated with K channels. At low concentrations (10-50 microM) the small, organic, dipolar molecule phloretin has several reported specific effects on K channels: it reduces K channel conductance, shifts the relationship between channel conductance and membrane voltage (Vm) to more positive potentials, and reduces the voltage dependence of the conductance-Vm relation. The K channel gating charge movements were altered in an analogous manner by 10 microM phloretin. We also measured the dominant time constants of the K channel ionic and gating currents. These time constants were similar over part of the accessible voltage range, but at potentials between -40 and 0 mV the gating current time constants were two to three times faster than the corresponding ionic current values. These features of K channel function can be reproduced by a simple kinetic model in which the channel is considered to consist of two, two-state, nonidentical subunits.


1998 ◽  
Vol 111 (5) ◽  
pp. 625-638 ◽  
Author(s):  
Michel J. Roux ◽  
Riccardo Olcese ◽  
Ligia Toro ◽  
Francisco Bezanilla ◽  
Enrico Stefani

Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as “charge immobilization” (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567–590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at −90 mV return potential changed from a single fast component to at least two components, the slower requiring ∼200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at −120 and −90 mV. In contrast, at higher potentials (−70 and −50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of “parallel” inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region.


2000 ◽  
Vol 115 (3) ◽  
pp. 319-338 ◽  
Author(s):  
Chih-Yung Tang ◽  
Francisco Bezanilla ◽  
Diane M. Papazian

We have characterized the effects of prepulse hyperpolarization and extracellular Mg2+ on the ionic and gating currents of the Drosophila ether-à-go-go K+ channel (eag). Hyperpolarizing prepulses significantly slowed channel opening elicited by a subsequent depolarization, revealing rate-limiting transitions for activation of the ionic currents. Extracellular Mg2+ dramatically slowed activation of eag ionic currents evoked with or without prepulse hyperpolarization and regulated the kinetics of channel opening from a nearby closed state(s). These results suggest that Mg2+ modulates voltage-dependent gating and pore opening in eag channels. To investigate the mechanism of this modulation, eag gating currents were recorded using the cut-open oocyte voltage clamp. Prepulse hyperpolarization and extracellular Mg2+ slowed the time course of ON gating currents. These kinetic changes resembled the results at the ionic current level, but were much smaller in magnitude, suggesting that prepulse hyperpolarization and Mg2+ modulate gating transitions that occur slowly and/or move relatively little gating charge. To determine whether quantitatively different effects on ionic and gating currents could be obtained from a sequential activation pathway, computer simulations were performed. Simulations using a sequential model for activation reproduced the key features of eag ionic and gating currents and their modulation by prepulse hyperpolarization and extracellular Mg2+. We have also identified mutations in the S3–S4 loop that modify or eliminate the regulation of eag gating by prepulse hyperpolarization and Mg2+, indicating an important role for this region in the voltage-dependent activation of eag.


1999 ◽  
Vol 277 (5) ◽  
pp. H1956-H1966 ◽  
Author(s):  
J. Christian Hesketh ◽  
David Fedida

On-gating current from the Kv1.5 cardiac delayed rectifier K+ channel expressed in HEK-293 cells was separated into two distinct charge systems, Q 1 and Q 2, obtained from double Boltzmann fits to the charge-voltage relationship. Q 1 and Q 2 had characteristic voltage dependence and sensitivity with half-activation potentials of −29.6 ± 1.6 and −2.19 ± 2.09 mV and effective valences of 1.87 ± 0.15 and 5.53 ± 0.27 e −, respectively. The contribution to total gating charge was 0.20 ± 0.04 for Q 1 and 0.80 ± 0.04 ( n = 5) for Q 2. At intermediate depolarizations, heteromorphic gating current waveforms resulted from relatively equal contributions from Q 1 and Q 2, but with widely different kinetics. Prepulses to −20 mV moved only Q 1, simplified on-gating currents, and allowed rapid Q 2 movement. Voltage-dependent on-gating current recovery in the presence of 4-aminopyridine (1 mM) suggested a sequentially coupled movement of the two charge systems during channel activation. This allowed the construction of a linear five-state model of Q 1 and Q 2 gating charge movement, which predicted experimental on-gating currents over a wide potential range. Such models are useful in determining state-dependent mechanisms of open and closed channel block of cardiac K+ channels.


1989 ◽  
Vol 32 (3) ◽  
pp. 681-687 ◽  
Author(s):  
C. Formby ◽  
B. Albritton ◽  
I. M. Rivera

We describe preliminary attempts to fit a mathematical function to the slow-component eye velocity (SCV) over the time course of caloric-induced nystagmus. Initially, we consider a Weibull equation with three parameters. These parameters are estimated by a least-squares procedure to fit digitized SCV data. We present examples of SCV data and fitted curves to show how adjustments in the parameters of the model affect the fitted curve. The best fitting parameters are presented for curves fit to 120 warm caloric responses. The fitting parameters and the efficacy of the fitted curves are compared before and after the SCV data were smoothed to reduce response variability. We also consider a more flexible four-parameter Weibull equation that, for 98% of the smoothed caloric responses, yields fits that describe the data more precisely than a line through the mean. Finally, we consider advantages and problems in fitting the Weibull function to caloric data.


2019 ◽  
Vol 33 (9) ◽  
pp. 10280-10290 ◽  
Author(s):  
Inge P. G. Bussel ◽  
Parastoo Fazelzadeh ◽  
Gary S. Frost ◽  
Milena Rundle ◽  
Lydia A. Afman

2003 ◽  
Vol 98 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Oliver Tucha ◽  
Christian Smely ◽  
Michael Preier ◽  
Georg Becker ◽  
Geraldine M. Paul ◽  
...  

Object. There is presently no specific information available concerning the nature and course of cognitive deficits caused by intracranial meningiomas. In this prospective study the authors examined the cognitive functioning of patients with frontal meningiomas. Methods. Fifty-four patients with frontal meningiomas were examined neuropsychologically before and after neurosurgery. The test battery consisted of standardized instruments including those assessing memory, attention, visuoconstructive abilities, and executive functions. The time period between pre-and postoperative assessment ranged from 4 to 9 months. The patients' performance was compared with the results in 54 healthy adults who were also assessed twice by using the same test battery in a period ranging from 4 to 9 months. In addition, the effect on cognition of meningioma lateralization, localization, lesion size, edema, brain compression, time course, and the occurrence of preoperative seizures was analyzed. Conclusions. Except in the case of working memory, comparisons of pre- and postoperative assessments of cognition revealed no differences in memory, visuoconstructive abilities, or executive functions, although a postoperative improvement in attentional functions was observed. The results of this study indicate that the surgical removal of frontal meningiomas does not impair patients' cognitive functioning. Furthermore, improvements in attentional functions may occur in these patients.


1993 ◽  
Vol 75 (6) ◽  
pp. 2718-2726 ◽  
Author(s):  
C. R. Woodman ◽  
C. M. Tipton ◽  
J. Evans ◽  
J. K. Linderman ◽  
K. Gosselink ◽  
...  

Rats exposed to head-down suspension (HDS) exhibit reductions in maximal O2 consumption (VO2max) and atrophy of select hindlimb muscles. This study tested the hypothesis that an endocrine-deficient rat exposed to HDS would not exhibit reductions in VO2max or hindlimb muscle mass. Hypophysectomized (HYPX) and sham-operated (SHAM) rats were tested for VO2max before and after 28 days of HDS or cage control (CC) conditions. No significant reductions in VO2max were observed in HYPX rats. In contrast, SHAM-HDS rats exhibited a significant reduction in absolute (-16%) and relative (-29%) measures of aerobic capacity. Time course experiments revealed a reduction in VO2max in SHAM-HDS rats within 7 days, suggesting that cardiovascular adjustments to HDS occurred in the 1st wk. HDS was associated with atrophy of the soleus (-42%) in SHAM rats, whereas HYPX rats exhibited atrophy of the soleus (-36%) and plantaris (-13%). SHAM-HDS rats had significantly lower (-38%) soleus citrate synthase activities per gram muscle mass than SHAM-CC, but no significant differences existed between HYPX-HDS and -CC rats. HDS rats had an impaired ability to thermoregulate, as indicated by significantly greater temperature increases per unit run time, compared with their CC counterparts. Pretreatment plasma epinephrine levels were significantly lower in HYPX than in SHAM rats. Norepinephrine concentration was similar for all groups except HYPX-HDS, in which it was significantly higher. HDS had no significant effect on thyroxine or triiodothyronine. SHAM-HDS rats had significantly lower concentrations of testosterone and growth hormone.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document