scholarly journals Single-cell temperature mapping with fluorescent thermometer nanosheets

2020 ◽  
Vol 152 (8) ◽  
Author(s):  
Kotaro Oyama ◽  
Mizuho Gotoh ◽  
Yuji Hosaka ◽  
Tomoko G. Oyama ◽  
Aya Kubonoya ◽  
...  

Recent studies using intracellular thermometers have shown that the temperature inside cultured single cells varies heterogeneously on the order of 1°C. However, the reliability of intracellular thermometry has been challenged both experimentally and theoretically because it is, in principle, exceedingly difficult to exclude the effects of nonthermal factors on the thermometers. To accurately measure cellular temperatures from outside of cells, we developed novel thermometry with fluorescent thermometer nanosheets, allowing for noninvasive global temperature mapping of cultured single cells. Various types of cells, i.e., HeLa/HEK293 cells, brown adipocytes, cardiomyocytes, and neurons, were cultured on nanosheets containing the temperature-sensitive fluorescent dye europium (III) thenoyltrifluoroacetonate trihydrate. First, we found that the difference in temperature on the nanosheet between nonexcitable HeLa/HEK293 cells and the culture medium was less than 0.2°C. The expression of mutated type 1 ryanodine receptors (R164C or Y523S) in HEK293 cells that cause Ca2+ leak from the endoplasmic reticulum did not change the cellular temperature greater than 0.1°C. Yet intracellular thermometry detected an increase in temperature of greater than ∼2°C at the endoplasmic reticulum in HeLa cells upon ionomycin-induced intracellular Ca2+ burst; global cellular temperature remained nearly constant within ±0.2°C. When rat neonatal cardiomyocytes or brown adipocytes were stimulated by a mitochondrial uncoupling reagent, the temperature was nearly unchanged within ±0.1°C. In cardiomyocytes, the temperature was stable within ±0.01°C during contractions when electrically stimulated at 2 Hz. Similarly, when rat hippocampal neurons were electrically stimulated at 0.25 Hz, the temperature was stable within ±0.03°C. The present findings with nonexcitable and excitable cells demonstrate that heat produced upon activation in single cells does not uniformly increase cellular temperature on a global basis, but merely forms a local temperature gradient on the order of ∼1°C just proximal to a heat source, such as the endoplasmic/sarcoplasmic reticulum ATPase.

2021 ◽  
Vol 67 (4) ◽  
pp. 37-43
Author(s):  
V.M. Shkryl ◽  
◽  
T.G. Turytska ◽  
V.A. Yavorsky ◽  
V.P. Lyashenko ◽  
...  

The effects of long-lasting high concentration coffee and caffeine diets on calcium mobilization in rat hippocampal neurons were studied. Changes in the basal calcium level in the hippocampal neurons of control and experimental rats kept on a coffee or caffeine diet were measured. We also recorded the changes in the Ca2+ transients’ amplitude evoked by membrane depolarization or emptying the Ca2+ depot of the endoplasmic reticulum (ER) induced by caffeine activator of the ryanodine receptors. In rats on a coffee or caffeine diet, the basal Ca2+ level was increased by 7.4% and 11%, respectively, compared to control animals. In these groups, the amplitude of Ca2+ transients increased by 70% and 90%, respectively, of the basal level in response to the membrane depolarization. In the same groups, the amount of Ca2+ released from the ER was increased by two and three times, respectively, compared to the control after activation of ryanodine receptors. We concluded that long-term coffee and caffeine diets in rats cause a significant disruption of the hippocampal neurons’ endoplasmic reticulum function. The diets evoke an increase in Ca2+ concentration in the neurons and an excessive release of Ca2+ in response to excitation. The latter can lead to increased excitability of neurons and their further death from excessive Ca2+ levels.


2007 ◽  
Vol 292 (2) ◽  
pp. C896-C908 ◽  
Author(s):  
Masako Kuba ◽  
Yoko Higure ◽  
Hisashi Susaki ◽  
Ryotaro Hayato ◽  
Kenji Kuba

How the endoplasmic reticulum (ER) and mitochondria communicate with each other and how they regulate plasmalemmal Ca2+entry were studied in cultured rat brown adipocytes. Cytoplasmic Ca2+or Mg2+and mitochondrial membrane potential were measured by fluorometry. The sustained component of rises in cytoplasmic Ca2+concentration ([Ca2+]i) produced by thapsigargin was abolished by removing extracellular Ca2+, depressed by depleting extracellular Na+, and enhanced by raising extracellular pH. FCCP, dinitrophenol, and rotenone caused bi- or triphasic rises in [Ca2+]i, in which the first phase was accompanied by mitochondrial depolarization. The FCCP-induced first phase was partially inhibited by oligomycin but not by ruthenium red, cyclosporine A, U-73122, a Ca2+-free EGTA solution, and an Na+-free solution. The FCCP-induced second phase paralleling mitochondrial repolarization was partially blocked by removing extracellular Ca2+and fully blocked by oligomycin but not by thapsigargin or an Na+-deficient solution, was accompanied by a rise in cytoplasmic Mg2+concentration, and was summated with a high pH-induced rise in [Ca2+]i, whereas the extracellular Ca2+-independent component was blocked by U-73122 and cyclopiazonic acid. The FCCP-induced third phase was blocked by removing Ca2+but not by thapsigargin, depressed by decreasing Na+, and enhanced by raising pH. Cyclopiazonic acid-evoked rises in [Ca2+]iin a Ca2+-free solution were depressed after FCCP actions. Thus mitochondrial uncoupling causes Ca2+release, activating Ca2+release from the ER and store-operated Ca2+entry, and directly elicits a novel plasmalemmal Ca2+entry, whereas Ca2+release from the ER activates Ca2+accumulation in, or release from, mitochondria, indicating bidirectional mitochondria-ER couplings in rat brown adipocytes.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 393-406 ◽  
Author(s):  
Linda J Wuestehube ◽  
Rainer Duden ◽  
Arlene Eun ◽  
Susan Hamamoto ◽  
Paul Korn ◽  
...  

Abstract We have isolated new temperature-sensitive mutations in five complementation groups, sec31-sec35, that are defective in the transport of proteins from the endoplasmic reticulum (ER) to the Golgi complex. The sec31-sec35 mutants and additional alleles of previously identified sec and vacuolar protein sorting (vps) genes were isolated in a screen based on the detection of α-factor precursor in yeast colonies replicated to and lysed on nitrocellulose filters. Secretory protein precursors accumulated in sec31-sec35 mutants at the nonpermissive temperature were core-glycosylated but lacked outer chain carbohydrate, indicating that transport was blocked after translocation into the ER but before arrival in the Golgi complex. Electron microscopy revealed that the newly identified sec mutants accumulated vesicles and membrane structures reminiscent of secretory pathway organelles. Complementation analysis revealed that sec32-1 is an allele of BOS1, a gene implicated in vesicle targeting to the Golgi complex, and sec33-1 is an allele of RET1, a gene that encodes the α subunit of coatomer.


Author(s):  
Jiefu Wang ◽  
Martin Krueger ◽  
Stefanie M. Hauck ◽  
Siegfried Ussar

Brown adipose tissue (BAT) plays a key role in maintaining body temperature as well as glucose and lipid homeostasis by its ability to dissipate energy through mitochondrial uncoupling. To facilitate these tasks BAT needs to adopt its thermogenic activity and substrate utilization to changes in nutrient availability, regulated by a complex network of neuronal, endocrine and nutritional inputs. Amongst this multitude of factors influencing BAT activity changes in the autophagic response of brown adipocytes are an important regulator of its thermogenic capacity and activity. Increasing evidence supports an important role of amino acid transporters in mTORC1 activation and the regulation of autophagy. However, a specific role of amino acid transporters in BAT regulating its function has not been described. Here we show that the brown adipocyte specific proton coupled amino acid transporter PAT2 rapidly translocates from the plasma membrane to the lysosome in response to amino acid withdrawal, where it facilitates the assembly of the lysosomal vATPase. Loss or overexpression of PAT2 therefore impair lysosomal acidification, autophagolysosome formation and starvation induced mTORC1 activation.


Science ◽  
2020 ◽  
Vol 368 (6486) ◽  
pp. 54-60 ◽  
Author(s):  
Zhangsen Zhou ◽  
Mauricio Torres ◽  
Haibo Sha ◽  
Christopher J. Halbrook ◽  
Françoise Van den Bergh ◽  
...  

The endoplasmic reticulum (ER) engages mitochondria at specialized ER domains known as mitochondria-associated membranes (MAMs). Here, we used three-dimensional high-resolution imaging to investigate the formation of pleomorphic “megamitochondria” with altered MAMs in brown adipocytes lacking the Sel1L-Hrd1 protein complex of ER-associated protein degradation (ERAD). Mice with ERAD deficiency in brown adipocytes were cold sensitive and exhibited mitochondrial dysfunction. ERAD deficiency affected ER-mitochondria contacts and mitochondrial dynamics, at least in part, by regulating the turnover of the MAM protein, sigma receptor 1 (SigmaR1). Thus, our study provides molecular insights into ER-mitochondrial cross-talk and expands our understanding of the physiological importance of Sel1L-Hrd1 ERAD.


1987 ◽  
Vol 168 (1) ◽  
pp. 233-246 ◽  
Author(s):  
Claude Forest ◽  
Alain Doglio ◽  
Louis Casteilla ◽  
Daniel Ricquier ◽  
Gerard Ailhaud

2018 ◽  
Vol 131 (1) ◽  
pp. jcs213447
Author(s):  
Arijita Ghosh ◽  
Nitin Khandelwal ◽  
Arvind Kumar ◽  
Amal Kanti Bera

2020 ◽  
Vol 8 (1) ◽  
pp. e916
Author(s):  
Jon Landa ◽  
Mar Guasp ◽  
Mar Petit-Pedrol ◽  
Eugenia Martínez-Hernández ◽  
Jesús Planagumà ◽  
...  

ObjectiveTo describe the clinical syndrome of 4 new patients with seizure-related 6 homolog like 2 antibodies (SEZ6L2-abs), study the antibody characteristics, and evaluate their effects on neuronal cultures.MethodsSEZ6L2-abs were initially identified in serum and CSF of a patient with cerebellar ataxia by immunohistochemistry on rat brain sections and immunoprecipitation from rat cerebellar neurons. We used a cell-based assay (CBA) of HEK293 cells transfected with SEZ6L2 to test the serum of 95 patients with unclassified neuropil antibodies, 331 with different neurologic disorders, and 10 healthy subjects. Additional studies included characterization of immunoglobulin G (IgG) subclasses and the effects of SEZ6L2-abs on cultures of rat hippocampal neurons.ResultsIn addition to the index patient, SEZ6L2-abs were identified by CBA in 3/95 patients with unclassified neuropil antibodies but in none of the 341 controls. The median age of the 4 patients was 62 years (range: 54–69 years), and 2 were female. Patients presented with subacute gait ataxia, dysarthria, and mild extrapyramidal symptoms. Initial brain MRI was normal, and CSF pleocytosis was found in only 1 patient. None improved with immunotherapy. SEZ6L2-abs recognized conformational epitopes. IgG4 SEZ6L2-abs were found in all 4 patients, and it was the predominant subclass in 2. SEZ6L2-abs did not alter the number of total or synaptic SEZ6L2 or the AMPA glutamate receptor 1 (GluA1) clusters on the surface of hippocampal neurons.ConclusionsSEZ6L2-abs associate with a subacute cerebellar syndrome with frequent extrapyramidal symptoms. The potential pathogenic effect of the antibodies is not mediated by internalization of the antigen.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2577
Author(s):  
Mounia Chami ◽  
Frédéric Checler

Sustained imbalance in intracellular calcium (Ca2+) entry and clearance alters cellular integrity, ultimately leading to cellular homeostasis disequilibrium and cell death. Alzheimer’s disease (AD) is the most common cause of dementia. Beside the major pathological features associated with AD-linked toxic amyloid beta (Aβ) and hyperphosphorylated tau (p-tau), several studies suggested the contribution of altered Ca2+ handling in AD development. These studies documented physical or functional interactions of Aβ with several Ca2+ handling proteins located either at the plasma membrane or in intracellular organelles including the endoplasmic reticulum (ER), considered the major intracellular Ca2+ pool. In this review, we describe the cellular components of ER Ca2+ dysregulations likely responsible for AD. These include alterations of the inositol 1,4,5-trisphosphate receptors’ (IP3Rs) and ryanodine receptors’ (RyRs) expression and function, dysfunction of the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) activity and upregulation of its truncated isoform (S1T), as well as presenilin (PS1, PS2)-mediated ER Ca2+ leak/ER Ca2+ release potentiation. Finally, we highlight the functional consequences of alterations of these ER Ca2+ components in AD pathology and unravel the potential benefit of targeting ER Ca2+ homeostasis as a tool to alleviate AD pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document