scholarly journals RYR1-related myopathies: Expanding the spectrum of morphological presentation

2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Vincenzo Sorrentino

Mutations in the RYR1 gene are the most common cause of nondystrophic congenital myopathies. Mutations in RYR1 were initially identified in individuals susceptible to malignant hyperthermia, a pharmacogenetic disorder triggered by volatile anesthetics and succinylcholine. Shortly after, mutations in RYR1 were identified in patients with central core disease, which is the most frequent congenital myopathy, and in other muscle disorders, collectively referred to as RYR1-related myopathies. RYR1 mutations are also responsible of some acute pathological conditions triggered by heat- and exercise-induced stress, named exertional heat stroke and exertional-induced rhabdomyolysis, which, similarly to malignant hyperthermia, occur in otherwise healthy individuals with normal skeletal muscle functions. Hundreds of causative mutations linked to RYR1-related diseases have been identified. These mutations are clustered in three regions that are referred to as the N-terminal, central, and C-terminal hot spots. Recent developments in cryo-EM techniques have provided high-resolution reconstructions of the channel, allowing a much better definition of the structural domains within the large N-terminal cytoplasmic region and in the C-terminal domain containing six transmembrane helices and the pore region of the channel. RYR1 mutations may either activate or inhibit channel function or, in some cases, can reduce the expression levels of RYR1 protein. However, similar clinical phenotypes can result from mutations with opposing effects on RYR1 function, or little or no correlation can be found between the observed clinical phenotype and localization of mutations in the structural domains of the RYR1 channel, even though recent studies indicate that clinically severe cases are mostly recessive or due to mutations located in the bridging solenoid. Recent results on the identification of RYR1 mutations in patients with myopathies will be presented.

2001 ◽  
Vol 94 (1) ◽  
pp. 95-100 ◽  
Author(s):  
Frank Wappler ◽  
Marko Fiege ◽  
Markus Steinfath ◽  
Kamayni Agarwal ◽  
Jens Scholz ◽  
...  

Background Malignant hyperthermia (MH), heat stroke, and exercise-induced rhabdomyolysis (ER) were suspected to be related syndromes. However, it is not known whether individuals with history of ER have an increased incidence of susceptibility to MH. To establish an association between ER and susceptibility to MH, the authors determined the MH status in patients with a history of MH-like episodes induced by physical stress. Methods Twelve unrelated patients with ER, 18 patients with anesthesia-induced MH, and 28 controls were investigated with the in vitro contracture test (IVCT) according to the European MH Group protocol and the ryanodine contracture test. In addition, all patients were screened for genetic mutations, and histology was performed on muscle specimens. Results Ten ER patients had positive IVCT results, one patient had a negative test result, and one patient showed equivocal responses. Samples from patients with positive IVCT results showed pronounced contractures after exposition to ryanodine, as opposed to specimens from patients with negative IVCT results, which developed contractures slowly. Three ER patients had mutations at the ryanodine receptor gene. All anesthesia-induced MH patients had positive IVCT results, two of them presented the C1840T mutation. The control patients had normal contracture test results and no typical MH mutations. Histologic examination determined no specific myopathies in any patient. Conclusions Regarding these results, the authors recommend performing muscle biopsies for histologic examination and IVCT in patients with ER. In addition, the patient should be seen by a neurologist and screened for genetic abnormalities to shed light on the genetics of MH.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3606
Author(s):  
Samuel P. Boyson ◽  
Cong Gao ◽  
Kathleen Quinn ◽  
Joseph Boyd ◽  
Hana Paculova ◽  
...  

Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.


2021 ◽  
pp. 1-22
Author(s):  
Meg Rithmire ◽  
Hao Chen

Abstract A large body of literature on state–business relations in China has examined the political role of capitalists and collusion between the state and the private sector. This paper contributes to that literature and understanding of the internal differentiation among China's business elites by documenting the emergence of a particular kind of large, non-state business group that we argue is more akin to a mafia system than any standard definition of a firm. Drawing on large-N descriptive data as well as deep ethnographic and documentary research, we argue that mafia-like business systems share organizational principles (plunder and obfuscation) and means of growth and survival (relations of mutual endangerment and manipulation of the financial system). Understanding the particular moral economy that underlies mafia-like business systems and their interactions with the state challenges methodological foundations of research on China's political economy and helps to explain recent conflict between high-profile business people and the state.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Cecilia Rocchi ◽  
Lara Barazzuol ◽  
Rob P. Coppes

AbstractDysfunction of the salivary gland and irreversible hyposalivation are the main side effects of radiotherapy treatment for head and neck cancer leading to a drastic decrease of the quality of life of the patients. Approaches aimed at regenerating damaged salivary glands have been proposed as means to provide long-term restoration of tissue function in the affected patients. In studies to elucidate salivary gland regenerative mechanisms, more and more evidence suggests that salivary gland stem/progenitor cell behavior, like many other adult tissues, does not follow that of the hard-wired professional stem cells of the hematopoietic system. In this review, we provide evidence showing that several cell types within the salivary gland epithelium can serve as stem/progenitor-like cells. While these cell populations seem to function mostly as lineage-restricted progenitors during homeostasis, we indicate that upon damage specific plasticity mechanisms might be activated to take part in regeneration of the tissue. In light of these insights, we provide an overview of how recent developments in the adult stem cell research field are changing our thinking of the definition of salivary gland stem cells and their potential plasticity upon damage. These new perspectives may have important implications on the development of new therapeutic approaches to rescue radiation-induced hyposalivation.


1994 ◽  
Vol 14 (3) ◽  
pp. 2201-2212 ◽  
Author(s):  
Z Yang ◽  
L Gu ◽  
P H Romeo ◽  
D Bories ◽  
H Motohashi ◽  
...  

GATA-3 is a zinc finger transcription factor which is expressed in a highly restricted and strongly conserved tissue distribution pattern in vertebrate organisms, specifically, in a subset of hematopoietic cells, in cells within the central and peripheral nervous systems, in the kidney, and in placental trophoblasts. Tissue-specific cellular genes regulated by GATA-3 have been identified in T lymphocytes and the placenta, while GATA-3-regulated genes in the nervous system and kidney have not yet been defined. We prepared monoclonal antibodies with which we could dissect the biochemical and functional properties of human GATA-3. The results of these experiments show some anticipated phenotypes, for example, the definition of discrete domains required for specific DNA-binding site recognition (amino acids 303 to 348) and trans activation (amino acids 30 to 74). The signaling sequence for nuclear localization of human GATA-3 is a property conferred by sequences within and surrounding the amino finger (amino acids 249 to 311) of the protein, thereby assigning a function to this domain and thus explaining the curious observation that this zinc finger is dispensable for DNA binding by the GATA family of transcription factors.


2009 ◽  
Vol 37 (3/4) ◽  
pp. 353-368
Author(s):  
Dario Martinelli

“Zoosemiotics” was introduced in 1963 by Thomas Albert Sebeok, initially as a compromise between ethological and semiotic research. In the beginning, Sebeok was convinced that “zoosemiotics” had to be used mostly as an umbrella term, uniting different scholarly approaches to animal communication). In the light of its most recent developments, a synthetic definition of zoosemiotics can be today that of the study of semiosis within and across animal species.


Author(s):  
Zhipeng Sun ◽  
Luqi Wang ◽  
Lu Han ◽  
Yue Wang ◽  
Yuan Zhou ◽  
...  

Background: Calsequestrins (Casqs), comprising the Casq1 and Casq2 isoforms, buffer Ca 2+ and regulate its release in the sarcoplasmic reticulum (SR) of skeletal and cardiac muscle, respectively. Human inherited diseases associated with mutations in CASQ1 or CASQ2 include malignant hyperthermia/environmental heat stroke (MH/EHS) and catecholaminergic polymorphic ventricular tachycardia. However, patients with an MH/EHS event often suffer from arrhythmia for which the underlying mechanism remains unknown. Methods: Working hearts from conventional ( Casq1 -KO) and cardiac-specific ( Casq1 -CKO) Casq1 knockout mice were monitored in vivo and ex vivo by electrocardiogram and electrical mapping, respectively. MH was induced by 2% isoflurane and treated intraperitoneally with dantrolene. Time-lapse imaging was used to monitor intracellular Ca 2+ activity in isolated mouse cardiomyocytes or neonatal rat ventricular myocytes (NRVMs) with knockdown, over-expression or truncation of the Casq1 gene. Conformational change in both Casqs was determined by crosslinking Western blot analysis. Results: Like MH/EHS patients, Casq1 -KO and Casq1 -CKO mice had faster basal heart rate, and ventricular tachycardia upon exposure to 2% isoflurane, which could be relieved by dantrolene. Basal sinus tachycardia and ventricular ectopic electrical triggering also occurred in Casq1 -KO hearts ex vivo . Accordingly, the ventricular cardiomyocytes from Casq1 -CKO mice displayed dantrolene-sensitive increased Ca 2+ waves and diastole premature Ca 2+ transients/oscillations upon isoflurane. NRVMs with Casq1-knockdown had enhanced spontaneous Ca2+ sparks/transients upon isoflurane, while cells over-expressing Casq1 exhibited decreased Ca2+ sparks/transients that were absent in cells with truncation of 9 amino acids at the C-terminus of Casq1. Structural evaluation showed that most of the Casq1 protein was present as a polymer and physically interacted with RyR2 in the ventricular SR. The Casq1 isoform was also expressed in human myocardium. Mechanistically, exposure to 2% isoflurane or heating at 41ºC induced Casq1 oligomerization in mouse ventricular and skeletal muscle tissues, leading to a reduced Casq1/RyR2 interaction and increased RyR2 activity in the ventricle. Conclusions: Casq1 is expressed in the heart, where it regulates SR Ca 2+ release and heart rate. Casq1 deficiency independently causes MH/EHS-like ventricular arrhythmia by trigger-induced Casq1 oligomerization and a relief of its inhibitory effect on RyR2-mediated Ca 2+ release, thus revealing a new inherited arrhythmia and a novel mechanism for MH/EHS arrhythmogenesis.


1994 ◽  
Vol 14 (3) ◽  
pp. 2201-2212
Author(s):  
Z Yang ◽  
L Gu ◽  
P H Romeo ◽  
D Bories ◽  
H Motohashi ◽  
...  

GATA-3 is a zinc finger transcription factor which is expressed in a highly restricted and strongly conserved tissue distribution pattern in vertebrate organisms, specifically, in a subset of hematopoietic cells, in cells within the central and peripheral nervous systems, in the kidney, and in placental trophoblasts. Tissue-specific cellular genes regulated by GATA-3 have been identified in T lymphocytes and the placenta, while GATA-3-regulated genes in the nervous system and kidney have not yet been defined. We prepared monoclonal antibodies with which we could dissect the biochemical and functional properties of human GATA-3. The results of these experiments show some anticipated phenotypes, for example, the definition of discrete domains required for specific DNA-binding site recognition (amino acids 303 to 348) and trans activation (amino acids 30 to 74). The signaling sequence for nuclear localization of human GATA-3 is a property conferred by sequences within and surrounding the amino finger (amino acids 249 to 311) of the protein, thereby assigning a function to this domain and thus explaining the curious observation that this zinc finger is dispensable for DNA binding by the GATA family of transcription factors.


Sign in / Sign up

Export Citation Format

Share Document