scholarly journals Small Intestinal Glucose Transport

1967 ◽  
Vol 50 (5) ◽  
pp. 1173-1182 ◽  
Author(s):  
Alan K. Rider ◽  
Harold P. Schedl ◽  
George Nokes ◽  
Streeter Shining

Proximal and distal small intestinal segments of the rat were perfused in situ at two different rates with isotonic solutions containing glucose in concentrations ranging from 25 to 600 mg/100 ml. Absorption was measured as glucose disappearance rate from the lumen. Glucose absorption had not previously been studied at intraluminal concentrations above and below blood glucose. Absorption was more rapid from the proximal segment. In both segments absorption was independent of perfusion rate and of whether glucose was analyzed by counting 14C or by the Somogyi method. The latter finding suggests that of the unidirectional fluxes, flux out of the bowel is much greater than flux into the bowel. In contrast to the findings in previous studies neither segment showed rate-limiting kinetics, and the Michaelis-Menten analysis was not applicable. The form of the curve depicting absorption rate in relation to concentration differed between the two segments. At the higher concentrations absorption rate continued to increase much more rapidly in the proximal than in the distal segment. The observations could not be explained by known mechanisms of glucose transport and illustrate the difficulties of achieving biochemically and physiologically meaningful in vivo studies of intestinal absorption.

1987 ◽  
Vol 7 (1) ◽  
pp. 6-9 ◽  
Author(s):  
Andrzej Breborowicz ◽  
Kostas Sombolos ◽  
Helen Rodela ◽  
Raymond Ogilvie ◽  
Joanne Bargman ◽  
...  

We studied the effect of phosphatidyl- choline (PDC) (50 mg/L) on the peritoneal ultrafiltration and permeability in vivo and in vitro. Our in vivo studies with normal rabbits confirmed previous observations of increased ultrafiltration mainly by decreasing the reabsorption phase. We observed no effect on glucose absorption rate. In in vitro studies, using isolated section of rabbit's mesentery, phosphatidylcholine increased the permeability of the mesothelium to water, urea and glucose from the vascular to the mesothelial side but not in the opposite direction. Following exposure of the peritoneal membrane to Alcian blue, a positively charged dye, phosphatidylcholine had no effect on mesothelial permeability. Our observations suggest that necessary for the action of phosphatidylcholine is its attachment to the anionic sites of the mesothelium. We speculate that improvement in UF is achieved by diminishing the thickness of the stagnant fluid layers trapped between the microvilli.


2012 ◽  
Vol 33 (5) ◽  
pp. 246-256 ◽  
Author(s):  
Bilal S. Abuasal ◽  
Hisham Qosa ◽  
Paul W. Sylvester ◽  
Amal Kaddoumi

2021 ◽  
Vol 95 ◽  
Author(s):  
E.S. El-Wakil ◽  
H.F. Abdelmaksoud ◽  
T.S. AbouShousha ◽  
M.M.I. Ghallab

Abstract Our work aimed to evaluate the possible effect of Annona muricata (Graviola) leaf extract on Trichinella spiralis in in vitro and in vivo studies. Trichinella spiralis worms were isolated from infected mice and transferred to three culture media – group I (with no drugs), group II (contained Graviola) and group III (contained albendazole) – then they were examined using the electron microscope. In the in vivo study, mice were divided into five groups: GI (infected untreated), GII (prophylactically treated with Graviola for seven days before infection), GIII (infected and treated with Graviola), GIV (infected and treated with albendazole) and GV (infected and treated with a combination of Graviola plus albendazole in half doses). Drug effects were assessed by adults and larvae load beside the histopathological small intestinal and muscular changes. A significant reduction of adult and larval counts occurred in treated groups in comparison to the control group. Histopathologically, marked improvement in the small intestinal and muscular changes was observed in treated groups. Also, massive destruction of the cultured adults’ cuticle was detected in both drugs. This study revealed that Graviola leaves have potential activity against trichinellosis, especially in combination with albendazole, and could serve as an adjuvant to anti-trichinellosis drug therapy.


Polymers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1138
Author(s):  
Lixuan Wang ◽  
Shiyan Dong ◽  
Yutong Liu ◽  
Yifan Ma ◽  
Jingjing Zhang ◽  
...  

Injectable hydrogels have been widely applied in the field of regenerative medicine. However, current techniques for injectable hydrogels are facing a challenge when trying to generate a biomimetic, porous architecture that is well-acknowledged to facilitate cell behaviors. In this study, an injectable, interconnected, porous hyaluronic acid (HA) hydrogel based on an in-situ bubble self-generation and entrapment process was developed. Through an amide reaction between HA and cystamine dihydrochloride activated by EDC/NHS, CO2 bubbles were generated and were subsequently entrapped inside the substrate due to a rapid gelation-induced retention effect. HA hydrogels with different molecular weights and concentrations were prepared and the effects of the hydrogel precursor solution’s concentration and viscosity on the properties of hydrogels were investigated. The results showed that HA10-10 (10 wt.%, MW 100,000 Da) and HA20-2.5 (2.5 wt.%, MW 200,000 Da) exhibited desirable gelation and obvious porous structure. Moreover, HA10-10 represented a high elastic modulus (32 kPa). According to the further in vitro and in vivo studies, all the hydrogels prepared in this study show favorable biocompatibility for desirable cell behaviors and mild host response. Overall, such an in-situ hydrogel with a self-forming bubble and entrapment strategy is believed to provide a robust and versatile platform to engineer injectable hydrogels for a variety of applications in tissue engineering, regenerative medicine, and personalized therapeutics.


1960 ◽  
Vol 198 (5) ◽  
pp. 1056-1058 ◽  
Author(s):  
T. Z. Csáky ◽  
Lawrence Zollicoffer

A loop of upper jejunum of anesthetized rats was perfused in situ with glucose (500 mg/l.) dissolved in either isosmotic Na2SO4, Li2SO4, K2SO4 or MgSO4. Rapid glucose absorption takes place from the Na2SO4 solution, whereas the glucose transport is inhibited if Na is replaced. The rate of inhibition varied: 91% with Li, 86% with K and 75% with Mg. The inhibition is reversible by the subsequent perfusion of the same gut with Na2SO4.


Clay Minerals ◽  
2020 ◽  
Vol 55 (2) ◽  
pp. 112-119
Author(s):  
Anna Stavitskaya ◽  
Christina Shakhbazova ◽  
Yulia Cherednichenko ◽  
Läysän Nigamatzyanova ◽  
Gölnur Fakhrullina ◽  
...  

AbstractTannic acid-stabilized silver nanoparticles were synthesized in situ on halloysite clay nanotubes. The synthesis strategy included simple steps of tannic acid adsorption on clay nanotubes and further particle formation from silver salt solution. Pristine halloysite nanotubes as well as amino-modified clays were used for silver stabilization in water or ethanol. The materials were tested for antibacterial performance using three different methods. All of the materials produced showed antimicrobial activity. The pristine halloysite-based material with ~5 nm particles produced using ethanol as the solvent and tannic acid as the reducing agent showed the greatest antibacterial activity against Serratia marcescens. The materials were tested in vivo on Caenorhabditis elegans nematodes to ensure their safety, and they showed no negative effects on nematode growth and life expectancy.


1984 ◽  
Vol 218 (1) ◽  
pp. 213-219 ◽  
Author(s):  
L C Threadgold ◽  
N J Kuhn

The Michaelis-Menten equation for the utilization of competing substrates was applied to the uptake of 2-deoxy[3H]glucose into the mammary gland of anaesthetized lactating rats. Intracellular water was calculated from total tissue water and sucrose space. Fed rats had a mean transport capacity of 2.2 mumol/min per g of tissue, giving an actual glucose transport in vivo of 1.1 mumol/min per g. Transport decreased by 90% on overnight starvation and returned to normal by 2 h of re-feeding. Similar changes were observed in the 1 min or 5 min transport of circulating 3-O-methylglucose. Transport of 3-O-methylglucose in starved rats was restored towards normal by insulin. In fed rats it increased between parturition and day 12 of lactation. The findings support the proposal that transport is a rate-limiting factor in the mammary utilization of carbohydrate.


2019 ◽  
Vol 28 (5) ◽  
pp. 596-606 ◽  
Author(s):  
Jeayoung Park ◽  
Petr Baranov ◽  
Aybike Aydin ◽  
Hany Abdelgawad ◽  
Deepti Singh ◽  
...  

One of the current limitations of retinal transplantation of stem cells as well as other cell types is the dispersion of cells from the injection site (including loss of cells into the vitreous chamber) and low survival after transplantation. Gelatin-hydroxyphenyl propionic acid (Gtn-HPA) conjugate is a biodegradable polymer that can undergo covalent cross-linking in situ, allowing for injection of incorporated cells through a small caliber needle followed by gel formation in vivo. We tested the hypothesis that Gtn-HPA hydrogel supports survival and integration of retinal progenitor cells (RPCs) post-transplantation. In vitro compatibility and in vivo graft survival were assessed by mixing an equal volume of Gtn-HPA conjugate and RPC suspension and triggering enzyme-mediated gelation, using minute amounts of horseradish peroxidase and peroxide. Immunocytochemistry showed >80% survival of cells and minimal apoptosis for cells incorporated into Gtn-HPA, equivalent to controls grown on fibronectin-coated flasks. RPCs undergoing mitosis were seen within the three-dimensional Gtn-HPA hydrogel, but the percentage of Ki-67-positive cells was lower compared with the monolayer controls. For in vivo studies, gel–cell mixture or cell suspension in saline was trans-sclerally injected into the left eye of female Long Evans rats immunosuppressed with cyclosporine A. Grafts survived at the 1 week time point of the study, with Gtn-HPA-delivered grafts showing less inflammatory response demonstrated by anti-leukocyte staining. More eyes in the gel–cell mixture group showed surviving cells in the subretinal space compared with saline-delivered controls, while the number of cells surviving per graft was not significantly different between the two groups. This work demonstrates an injectable in situ cross-linking hydrogel as a potential vehicle for stem cell delivery in the retina.


Sign in / Sign up

Export Citation Format

Share Document