scholarly journals Relationship between light sensitivity and intracellular free Ca concentration in Limulus ventral photoreceptors. A quantitative study using Ca-selective microelectrodes.

1985 ◽  
Vol 85 (6) ◽  
pp. 805-841 ◽  
Author(s):  
S Levy ◽  
A Fein

The possible role of Ca ions in mediating the drop in sensitivity associated with light adaptation in Limulus ventral photoreceptors was assessed by simultaneously measuring the sensitivity to light and the intracellular free Ca concentration (Cai); the latter was measured by using Ca-selective microelectrodes. In dark-adapted photoreceptors, the mean resting Cai was 3.5 +/- 2.5 microM SD (n = 31). No correlation was found between resting Cai and absolute sensitivity from cell to cell. Typically, photoreceptors are not uniformly sensitive to light; the Cai rise evoked by uniform illumination was 20-40 times larger and faster in the most sensitive region of the cell (the rhabdomeral lobe) than it was away from it. In response to a brief flash, the Cai rise was barely detectable when 10(2) photons were absorbed, and it was saturated when approximately 10(5) photons were absorbed. During maintained illumination, starting near the threshold of light adaptation, steady Cai increases were associated with steady desensitizations over several log units of light intensity: a 100-fold desensitization was associated with a 2.5-fold increase in Cai. After a bright flash, sensitivity and Cai recovered with different time courses: the cell was still desensitized by approximately 0.5 log units when Cai had already recovered to the prestimulus level, which suggests that under those conditions Cai is not the rate-limiting step of dark adaptation. Ionophoretic injection of EGTA markedly decreased the light-induced Cai rise and increased the time to peak of the light response, but did not alter the resting Cai, which suggests that the time to peak is affected by a change in the capacity to bind Ca2+ and not by resting Cai. Lowering the extracellular Ca2+ concentration (Cao) first decreased Cai and increased sensitivity. Longer exposure to low Cao resulted in a further decrease of Cai but decreased rather than increased sensitivity, which suggests that under certain conditions it is possible to uncouple Cai and sensitivity.

1989 ◽  
Vol 93 (6) ◽  
pp. 1091-1108 ◽  
Author(s):  
A E Barkdoll ◽  
E N Pugh ◽  
A Sitaramayya

The Ca2+ dependence of the kinetics and light sensitivity of light-activated phosphodiesterase was studied with a pH assay in toad and bovine rod disk membranes (RDM), and in a reconstituted system containing GTP-binding protein, phosphodiesterase and rhodopsin kinase. Three statistics, peak hydrolytic velocity, turnoff time, and time to peak velocity, were measured. ATP decreased phosphodiesterase light sensitivity nearly 10-fold and accelerated the dim-flash kinetics of cGMP hydrolysis when compared to those with GTP alone. CA2+ reversed all of the effects of ATP, Ca2+ increased peak velocity, turnoff time, and time to peak velocity, to the values obtained with GTP alone. The Ca2+ dependence of peak velocity and turnoff time can be characterized as hyperbolic saturation functions with a K0.5 for Ca2+ of 1.0-1.5 mM in toad RDM. In bovine RDM the Ca2+ dependence of peak velocity and turnoff time has a K0.5 of 0.1 mM Ca2+. The Ca2+ dependence in the reconstituted system is similar to that in bovine RDM for peak velocity (K0.5 = 0.1 mM Ca2+) but differs for turnoff time (K0.5 = 2.5 mM Ca2+). We tested the hypothesis that a soluble modulator, normally required to confer submicromolar Ca2+ sensitivity, was too dilute in our assay by comparing data obtained at one RDM concentration with those obtained at 10-fold higher RDM, and therefore a constituent protein, concentration. We observe no difference and present a formal analysis of these data that excludes the hypothesis that the soluble modulator binds its target protein with Kd less than 5 microM. The lack of submicromolar Ca2+ dependence of any of the steps in the cGMP cascade that underlie cGMP phosphodiesterase activation and inactivation in vitro argues against Ca2+ regulation of these steps having a significant role in the light adaptation of the intact rod.


1991 ◽  
Vol 97 (2) ◽  
pp. 369-391 ◽  
Author(s):  
P M O'Day ◽  
M P Gray-Keller ◽  
M Lonergan

In previous work we have presented evidence for electrogenic Na+/Ca2+ exchange in Limulus ventral photoreceptors (1989. J. Gen. Physiol. 93:473-492). This article assesses the contributions to photoreceptor physiology from Na+/Ca2+ exchange. Four separate physiological processes were considered: maintenance of resting sensitivity, light-induced excitation, light adaptation, and dark adaptation. (a) Resting sensitivity: reduction of [Na+]o caused a [Ca2+]o-dependent reduction in light sensitivity and a speeding of the time courses of the responses to individual test flashes; this effect was dependent on the final value to which [Na+]o was reduced. The desensitization caused by Na+ reduction was dependent on the initial sensitivity of the photoreceptor; in fully dark-adapted conditions no desensitization was observed; in light-adapted conditions, extensive desensitization was observed. (b) Excitation: Na+ reduction in fully dark-adapted conditions caused a Ca2+o-dependent depolarizing phase in the receptor potential that persisted beyond the stimulus duration and was evoked by a bright adapting flash. (c) Light adaptation: the degree of desensitization induced by a bright adapting flash was Na+o dependent, being larger with lower [Na+]o. Na+ reduction enhanced light adaptation only at intensities brighter than 4 x 10(-6) W/cm2. In addition to being Na+o dependent, light adaptation was Ca2+o dependent, being greater at higher [Ca2+]o. (d) Dark adaptation: the recovery of light sensitivity after adapting illumination was Na+o dependent. Dark adaptation after bright illumination in voltage-clamped and in unclamped conditions was faster in normal-Na+ saline than in reduced Na+ saline. The final sensitivity to which photoreceptors recovered was lower in reduced-Na+ saline when bright adapting illumination was used. The results suggest the involvement of Na+/Ca2+ exchange in each of these physiological processes. Na+/Ca2+ exchange may contribute to these processes by counteracting normal elevations in [Ca2+]i.


1991 ◽  
Vol 97 (1) ◽  
pp. 55-72 ◽  
Author(s):  
E Nasi

Light-dependent membrane currents were recorded from solitary Lima photoreceptors with the whole-cell clamp technique. Light stimulation from a holding voltage near the cell's resting potential evokes a transient inward current graded with light intensity, accompanied by an increase in membrane conductance. While the photocurrent elicited by dim flashes decays smoothly, at higher stimulus intensities two kinetically distinct components become visible. Superfusion with TEA or intracellular perfusion with Cs do not eliminate this phenomenon, indicating that it is not due to the activation of the Ca-sensitive K channels that are present in these cells. The relative amplitude of the late component vs. the early peak of the light response is significantly more pronounced at -60 mV than at -40 mV. At low light intensities the reversal potential of the photocurrent is around 0 mV, but with brighter lights no single reversal potential is found; rather, a biphasic response with an inward and an outward component can be seen within a certain range of membrane voltages. Light adaptation through repetitive stimulation with bright flashes diminishes the amplitude of the early but not the late phase of the photocurrent. These observations can be accounted for by postulating two separate light-dependent conductances with different ionic selectivity, kinetics, and light sensitivity. The light response is also shown to interact with some of the voltage-sensitive conductances: activation of the Ca current by a brief conditioning prepulse is capable of attenuating the photocurrent evoked by a subsequent test flash. Thus, Ca channels in these cells may not only shape the photoresponse, but also participate in the process of light adaptation.


Author(s):  
Alain R. Trudel ◽  
M. Trudel

AirfugeR (Beckman) direct ultracentrifugation of viral samples on electron microscopy grids offers a rapid way to concentrate viral particles or subunits and facilitate their detection and study. Using the A-100 fixed angle rotor (30°) with a K factor of 19 at maximum speed (95 000 rpm), samples up to 240 μl can be prepared for electron microscopy observation in a few minutes: observation time is decreased and structural details are highlighted. Using latex spheres to calculate the increase in sensitivity compared to the inverted drop procedure, we obtained a 10 to 40 fold increase in sensitivity depending on the size of particles. This technique also permits quantification of viral particles in samples if an aliquot is mixed with latex spheres of known concentration.Direct ultracentrifugation for electron microscopy can be performed on laboratory samples such as gradient or column fractions, infected cell supernatant, or on clinical samples such as urine, tears, cephalo-rachidian liquid, etc..


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Yuhao Dong ◽  
Qing Li ◽  
Jinzhu Geng ◽  
Qing Cao ◽  
Dan Zhao ◽  
...  

AbstractThe TonB system is generally considered as an energy transporting device for the absorption of nutrients. Our recent study showed that deletion of this system caused a significantly increased sensitivity of Aeromonas hydrophila to the macrolides erythromycin and roxithromycin, but had no effect on other classes of antibiotics. In this study, we found the sensitivity of ΔtonB123 to all macrolides tested revealed a 8- to 16-fold increase compared with the wild-type (WT) strain, but this increase was not related with iron deprivation caused by tonB123 deletion. Further study demonstrated that the deletion of tonB123 did not damage the integrity of the bacterial membrane but did hinder the function of macrolide efflux. Compared with the WT strain, deletion of macA2B2, one of two ATP-binding cassette (ABC) types of the macrolide efflux pump, enhanced the sensitivity to the same levels as those of ΔtonB123. Interestingly, the deletion of macA2B2 in the ΔtonB123 mutant did not cause further increase in sensitivity to macrolide resistance, indicating that the macrolide resistance afforded by the MacA2B2 pump was completely abrogated by tonB123 deletion. In addition, macA2B2 expression was not altered in the ΔtonB123 mutant, indicating that any influence of TonB on MacA2B2-mediated macrolide resistance was at the pump activity level. In conclusion, inactivation of the TonB system significantly compromises the resistance of A. hydrophila to macrolides, and the mechanism of action is related to the function of MacA2B2-mediated macrolide efflux.


1991 ◽  
Vol 97 (2) ◽  
pp. 303-320 ◽  
Author(s):  
A Castellano ◽  
J López-Barneo

Voltage-gated Na+ and Ca2+ conductances of freshly dissociated septal neurons were studied in the whole-cell configuration of the patch-clamp technique. All cells exhibited a large Na+ current with characteristic fast activation and inactivation time courses. Half-time to peak current at -20 mV was 0.44 +/- 0.18 ms and maximal activation of Na+ conductance occurred at 0 mV or more positive membrane potentials. The average value was 91 +/- 32 nS (approximately 11 mS cm-2). At all membrane voltages inactivation was well fitted by a single exponential that had a time constant of 0.44 +/- 0.09 ms at 0 mV. Recovery from inactivation was complete in approximately 900 ms at -80 mV but in only 50 ms at -120 mV. The decay of Na+ tail currents had a single time constant that at -80 mV was faster than 100 microseconds. Depolarization of septal neurons also elicited a Ca2+ current that peaked in approximately 6-8 ms. Maximal peak Ca2+ current was obtained at 20 mV, and with 10 mM external Ca2+ the amplitude was 0.35 +/- 0.22 nA. During a maintained depolarization this current partially inactivated in the course of 200-300 ms. The Ca2+ current was due to the activity of two types of conductances with different deactivation kinetics. At -80 mV the closing time constants of slow (SD) and fast (FD) deactivating channels were, respectively, 1.99 +/- 0.2 and 0.11 +/- 0.03 ms (25 degrees C). The two kinds of channels also differed in their activation voltage, inactivation time course, slope of the conductance-voltage curve, and resistance to intracellular dialysis. The proportion of SD and FD channels varied from cell to cell, which may explain the differential electrophysiological responses of intracellularly recorded septal neurons.


1993 ◽  
Vol 70 (4) ◽  
pp. 1300-1306 ◽  
Author(s):  
R. Bakels ◽  
D. Kernell

1. Properties of single motoneuron/muscle-unit combinations were determined for tibialis anterior (TA) in rats anesthetized with pentobarbital. The TA observations were systematically compared with those obtained earlier by the use of the same techniques from rat medial gastrocnemius (MG). 2. TA motoneurons were investigated with regard to afterhyperpolarization (AHP; total duration 32-74 ms, amplitude 0.39-4.96 mV) and axonal conduction velocity (41-79 m/s). TA muscle-unit measurements included the time course of the isometric twitch (time-to-peak force 10.8-18.0 ms; total duration 42-92 ms), the maximum tetanic force (22-217 mN), and a measure of fatigue sensitivity (fatigue index 5-100%). The range of twitch and AHP durations ("speed range") was markedly smaller in the present TA material than for MG. 3. The mean duration of the TA motoneuronal AHP (49 +/- 8 ms, mean +/- SD) was close to that of its muscle-unit twitch (56 +/- 12 ms). Thus an "average" speed match existed between TA motoneurons and their muscle fibers. 4. For TA there was no correlation between the time courses of AHP and twitch. Thus there was for TA no "continuous" speed match between the motoneurons and their muscle fibers. 5. For TA twitches or AHPs studied separately, there was a significant correlation between different time course measures. Furthermore, compared with TA units having relatively fast twitches, those with slower twitches tended to show 1) a smaller maximum tetanic force and 2) a greater AHP amplitude. Fatigue-resistant units tended to have slower twitches than fatigue-sensitive ones.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 20 (4) ◽  
pp. 437-452 ◽  
Author(s):  
GILAD TWIG ◽  
HANNA LEVY ◽  
ELITE WEINER ◽  
IDO PERLMAN

Chromaticity-type (C-type) horizontal cells of the turtle retina receive antagonistic inputs from cones of different spectral types, and therefore their response to background illumination is expected to reflect light adaptation of the cones and the interactions between their antagonistic inputs. Our goal was to study the behavior of C-type horizontal cells during background illumination and to evaluate the role of wavelength in background adaptation. The photoresponses of C-type horizontal cells were recorded intracellularly in the everted eyecup preparation of the turtleMauremys caspicaduring chromatic background illuminations. The voltage range of operation was either reduced or augmented, depending upon the wavelengths of the background and of the light stimuli, while the sensitivity to light was decreased by any background. The response–intensity curves were shifted to brighter intensities and became steeper as the background lights were made brighter regardless of wavelength. Comparing the effects of cone iso-luminant backgrounds on the Red/Green C-type horizontal cells indicated that background desensitization in these cells could not solely reflect background adaptation of cones but also depend upon response compression/expansion and changes in synaptic transmission. This leads to wavelength dependency of background adaptation in C-type horizontal cells, that is expressed as increased light sensitivity (smaller threshold elevation) and improved suprathreshold contrast detection when the wavelengths of the background and light stimuli were chosen to exert opponent effects on membrane potential.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A166-A166
Author(s):  
J E Stone ◽  
E M McGlashan ◽  
S W Cain ◽  
A J Phillips

Abstract Introduction Existing models of the human circadian clock accurately predict phase at group-level but not at individual-level. Interindividual variability in light sensitivity is not currently accounted for in these models and may be a practical approach to improving individual-level predictions. Using the gold-standard predictive model, we (i) identified whether varying light sensitivity parameters produces meaningful changes in predicted phase in field conditions; and (ii) tested whether optimizing parameters can significantly improve accuracy of circadian phase prediction. Methods Healthy participants (n=12, 7 women, aged 18-26) underwent continuous light and activity monitoring for 3 weeks (Actiwatch Spectrum). Salivary dim light melatonin onset (DLMO) was measured each week. A model of the human circadian clock and its response to light was used to predict the three weekly DLMO times using the individual’s light data. A sensitivity analysis was performed varying three model parameters within physiological ranges: (i) amplitude of the light response [p]; (ii) advance vs. delay bias of the light response [K]; and (iii) intrinsic circadian period [tau]. These parameters were then fitted using least squares estimation to obtain optimal predictions of DLMO for each individual. Accuracy was compared between optimized parameters and default parameters. Results The default model predicted DLMO with mean absolute error of 1.02h. Sensitivity analysis showed the average range of variation in predicted DLMOs across participants was 0.65h for p, 4.28h for K and 3.26h for tau. Fitting parameters independently, we found mean absolute error of 0.85h for p, 0.71h for K and 0.75h for tau. Fitting p and K together reduced mean absolute error to 0.57h. Conclusion Light sensitivity parameters capture similar or greater variability in phase as intrinsic circadian period, indicating they are a viable option for individualising circadian phase predictions. Future prospective work is needed using measures of light sensitivity to validate this approach. Support N/A


2010 ◽  
Vol 135 (4) ◽  
pp. 355-366 ◽  
Author(s):  
Hugh R. Matthews ◽  
Alapakkam P. Sampath

The time scale of the photoresponse in photoreceptor cells is set by the slowest of the steps that quench the light-induced activity of the phototransduction cascade. In vertebrate photoreceptor cells, this rate-limiting reaction is thought to be either shutoff of catalytic activity in the photopigment or shutoff of the pigment's effector, the transducin-GTP–phosphodiesterase complex. In suction pipette recordings from isolated salamander L-cones, we found that preventing changes in internal [Ca2+] delayed the recovery of the light response and prolonged the dominant time constant for recovery. Evidence that the Ca2+-sensitive step involved the pigment itself was provided by the observation that removal of Cl− from the pigment's anion-binding site accelerated the dominant time constant for response recovery. Collectively, these observations indicate that in L-cones, unlike amphibian rods where the dominant time constant is insensitive to [Ca2+], pigment quenching rate limits recovery and provides an additional mechanism for modulating the cone response during light adaptation.


Sign in / Sign up

Export Citation Format

Share Document