scholarly journals Na channel distribution in vertebrate skeletal muscle.

1986 ◽  
Vol 87 (6) ◽  
pp. 907-932 ◽  
Author(s):  
J H Caldwell ◽  
D T Campbell ◽  
K G Beam

The loose patch voltage clamp has been used to map Na current density along the length of snake and rat skeletal muscle fibers. Na currents have been recorded from (a) endplate membrane exposed by removal of the nerve terminal, (b) membrane near the endplate, (c) extrajunctional membrane far from both the endplate and the tendon, and (d) membrane near the tendon. Na current densities recorded directly on the endplate were extremely high, exceeding 400 mA/cm2 in some patches. The membrane adjacent to the endplate has a current density about fivefold lower than that of the endplate, but about fivefold higher than the membrane 100-200 micron from the endplate. Small local variations in Na current density are recorded in extrajunctional membrane. A sharp decrease in Na current density occurs over the last few hundred micrometers from the tendon. We tested the ability of tetrodotoxin to block Na current in regions close to and far from the endplate and found no evidence for toxin-resistant channels in either region. There was also no obvious difference in the kinetics of Na current in the two regions. On the basis of the Na current densities measured with the loose patch clamp, we conclude that Na channels are abundant in the endplate and near-endplate membrane and are sparse close to the tendon. The current density at the endplate is two to three orders of magnitude higher than at the tendon.

2003 ◽  
Vol 12 (2) ◽  
pp. 147-157 ◽  
Author(s):  
Hwa C. Lee ◽  
Manoj K. Patel ◽  
Dilawaar J. Mistry ◽  
Qingcai Wang ◽  
Sita Reddy ◽  
...  

DMPK is a serine/threonine kinase implicated in the human disease myotonic muscular dystrophy (DM). Skeletal muscle Na channels exhibit late reopenings in Dmpk-deficient mice and peak current density is reduced, implicating DMPK in regulation of membrane excitability. Since complete heart block and sudden cardiac death occur in the disease, we tested the hypothesis that cardiac Na channels also exhibit abnormal gating in Dmpk-deficient mice. We made whole cell and cell-attached patch clamp recordings of ventricular cardiomyocytes enzymatically isolated from wild-type, Dmpk+/−, and Dmpk−/− mice. Recordings from membrane patches containing one or a few Na channels revealed multiple Na channel reopenings occurring after the macroscopic Na current had subsided in both Dmpk+/− and Dmpk−/− muscle, but only rare reopenings in wild-type muscle (>3-fold difference, P < 0.05). This resulted in a plateau of non-inactivating Na current in Dmpk-deficient muscle. The magnitude of this plateau current was independent on the magnitude of the test potential from −40 to 0 mV and was also independent of gene dose. Macroscopic Na current density was similar in wild-type and Dmpk-deficient muscle, as was steady-state Na channel gating. Decay of macroscopic currents was slowed in Dmpk−/− muscle, but not in Dmpk+/− or wild-type muscle. Entry into, and recovery from, inactivation were similar at multiple test potentials in wild-type and Dmpk-deficient muscle. Resting membrane potential was depolarized, and action potential duration was significantly prolonged in Dmpk-deficient muscle. Thus in cardiac muscle, Dmpk deficiency results in multiple late reopenings of Na channels similar to those seen in Dmpk-deficient skeletal muscle. This is reflected in a plateau of non-inactivating macroscopic Na current and prolongation of cardiac action potentials.


1995 ◽  
Vol 269 (5) ◽  
pp. H1695-H1703 ◽  
Author(s):  
J. Maylie ◽  
M. Morad

Two types of Ca2+ currents with characteristics of T- and L-type Ca2+ currents were recorded in ventricular myocytes of dogfish (Squalus acanthias). The T-type Ca2+ current activated near -70 mV and had a peak current density of 9.8 pA/pF at -34 mV. The L-type Ca2+ current activated near -50 mV and had a peak current density of 10.6 pA/pF near 0 mV. The threshold for activation of the T-type Ca2+ current was 20 mV negative to that of the tetrodotoxin-sensitive Na+ current. Inactivation of the T-type Ca2+ current was rapid with a limiting time constant of 5 ms at positive potentials. The T-type Ca2+ current was not modulated by isoproterenol or acetylcholine. In dogfish the T-type Ca2+ channel has current densities equivalent to the L-type channel and is likely to activate before the Na+ channel, contributing significantly to generation of the foot of the action potential.


Author(s):  
I-Fei Tsu ◽  
D.L. Kaiser ◽  
S.E. Babcock

A current theme in the study of the critical current density behavior of YBa2Cu3O7-δ (YBCO) grain boundaries is that their electromagnetic properties are heterogeneous on various length scales ranging from 10s of microns to ˜ 1 Å. Recently, combined electromagnetic and TEM studies on four flux-grown bicrystals have demonstrated a direct correlation between the length scale of the boundaries’ saw-tooth facet configurations and the apparent length scale of the electrical heterogeneity. In that work, enhanced critical current densities are observed at applied fields where the facet period is commensurate with the spacing of the Abrikosov flux vortices which must be pinned if higher critical current density values are recorded. To understand the microstructural origin of the flux pinning, the grain boundary topography and grain boundary dislocation (GBD) network structure of [001] tilt YBCO bicrystals were studied by TEM and HRTEM.


1992 ◽  
Vol 262 (1) ◽  
pp. C229-C234 ◽  
Author(s):  
R. L. Ruff

Na current density and membrane capacitance were studied with the loose patch voltage clamp technique on rat fast- and slow-twitch skeletal muscle fibers at three different regions on the fibers: 1) the end plate border, 2) greater than 200 microns from the end plate (extrajunctional), and 3) on the end plate postsynaptic membrane. Fibers were treated with collagenase to improve visualization of the end plate and to enzymatically remove the nerve terminal. The capacitance of membrane patches was similar on fast- and slow-twitch fibers and patches of membrane on the end plate had twice the capacitance of patches elsewhere. For fast- and slow-twitch fibers, the sizes of the Na current normalized to the area of the patch were as follows: end plate greater than end plate border greater than extrajunctional. For both types of fibers, the amplitudes of the Na current normalized to the capacitance of the membrane patch were as follows: end plate approximately end plate border greater than extrajunctional. At each of the three regions, the Na current densities were larger on fast-twitch fibers and fast-twitch fibers had a larger increase in Na current density at the end plate border compared with extrajunctional membrane.


1985 ◽  
Vol 86 (5) ◽  
pp. 739-762 ◽  
Author(s):  
G K Wang ◽  
G Strichartz

The effects of a neurotoxin, purified from the venom of the scorpion Leiurus quinquestriatus, on the ionic currents of toad single myelinated fibers were studied under voltage-clamp conditions. Unlike previous investigations using crude scorpion venom, purified Leiurus toxin II alpha at high concentrations (200-400 nM) did not affect the K currents, nor did it reduce the peak Na current in the early stages of treatment. The activation of the Na channel was unaffected by the toxin, the activation time course remained unchanged, and the peak Na current vs. voltage relationship was not altered. In contrast, Na channel inactivation was considerably slowed and became incomplete. As a result, a steady state Na current was maintained during prolonged depolarizations of several seconds. These steady state Na currents had a different voltage dependence from peak Na currents and appeared to result from the opening of previously inactivated Na channels. The opening kinetics of the steady state current were exponential and had rates approximately 100-fold slower than the normal activation processes described for transitions from the resting state to the open state. In addition, the dependence of the peak Na current on the potential of preceding conditioning pulses was also dramatically altered by toxin treatment; this parameter reached a minimal value near a membrane potential of -50 mV and then increased continuously to a "plateau" value at potentials greater than +50 mV. The amplitude of this plateau was dependent on toxin concentration, reaching a maximum value equal to approximately 50% of the peak current; voltage-dependent reversal of the toxin's action limits the amplitude of the plateauing effect. The measured plateau effect was half-maximum at a toxin concentration of 12 nM, a value quite similar to the concentration producing half of the maximum slowing of Na channel inactivation. The results of Hill plots for these actions suggest that one toxin molecule binds to one Na channel. Thus, the binding of a single toxin molecule probably both produces the steady state currents and slows the Na channel inactivation. We propose that Leiurus toxin inhibits the conversion of the open state to inactivated states in a voltage-dependent manner, and thereby permits a fraction of the total Na permeability to remain at membrane potentials where inactivation is normally complete.


1991 ◽  
Vol 65 (4) ◽  
pp. 989-1002 ◽  
Author(s):  
H. Sontheimer ◽  
S. G. Waxman ◽  
B. R. Ransom

1. Cell-cell coupling between hippocampal astrocytes in culture was studied by following the intracellular spread of the low molecular weight fluorescent dye Lucifer yellow (LY). Dye coupling appeared as early as 24 h after plating, at which time approximately 20% of all astrocytes that physically contacted neighboring cells showed dye coupling. 2. The percentage of coupled cells increased with time in culture and peaked after 10 days in vitro (DIV) when approximately 50% of astrocytes showed coupling. Further time in culture, up to 20 DIV, did not increase the percentage of coupled cells. Thus, coupled and noncoupled astrocytes coexist in hippocampal cultures in approximately equal numbers. 3. Na+ currents were expressed in a subpopulation of hippocampal astrocytes and changed characteristics during in vitro development. A "neuronal type" of Na+ current, so called because of an h alpha curve that had a midpoint near -60 mV, was observed within the first 5 days post-plating. A "glial type" of Na+ current, characterized by a -25 mV shift in its h alpha curve, was only expressed after 6 days in culture. 4. Na+ current expression was restricted to hippocampal astrocytes that did not exhibit dye coupling; astrocytes that exhibited dye coupling (n = 39) did not show measurable Na+ currents. 5. The failure to see Na+ currents in coupled astrocytes cannot be explained by insufficient space-clamp since astrocytes acutely uncoupled with octanol (10 microM) did not reveal Na+ current expression. Control experiments showed that low concentrations of octanol (i.e., 10-100 microM) did not block Na+ currents; blockage of Na+ currents by octanol was only observed at high concentrations (e.g., 50-fold the concentration used for uncoupling). These observations support the idea that Na(+)-channel expression was restricted to noncoupled astrocytes. 6. The time courses for the development of cell coupling and Na+ current expression appeared to be inversely correlated and suggested a gradual increase in cell coupling in concert with a loss in Na+ current expression with time in culture.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
H Ogita ◽  
D.P Zankov ◽  
A Shimizu

Abstract   Brugada syndrome (BrS) is diagnosed by a typical electrocardiography (ECG) with ST-segment elevation in precordial leads and tends to induce sudden cardiac death (SCD) due to ventricular tachycardia/fibrillation. About 20% of SCDs in non-structural cardiac diseases are considered to be caused by BrS. In patients with BrS, loss of function mutations in the Na+ channel is often observed, but the causative gene mutation is not detected for about 70% of BrS patients. Here, we investigated a family with clinically diagnosed BrS, in which no known gene mutations related to BrS had not been found, by whole exome sequencing. Novel heterozygous variant (c. 1616G&gt;A, p. R539Q) in transmembrane protein 168 (TMEM168) was identified only in symptomatic family members. Similar to endogenous TMEM168, both wild-type and mutant TMEM168 localized at the nuclear membrane. Na+ current density in whole-cell patch-clamp recordings was significantly reduced in HL-1 cardiomyocytes transfected with TMEM168 R539Q mutant, compared with those with wild-type TMEM168. Next, heterozygous Tmem168 1616G&gt;A knock-in mice were generated by the CRISPR/Cas9 genome editing technology. Although the knock-in mice had no abnormalities in ECG at the physiological state, the treatment with ajmaline caused various arrhythmias including ventricular tachycardia/fibrillation in the knock-in mice, but not in wild-type mice. Na+ current density and the parameters of action potentials were remarkably impaired in the cardiomyocytes of the knock-in mice. Optical mapping analysis in the whole heart showed the reduced left ventricular conduction velocity in the knock-in mice. The expression of Nav1.5, an α-subunit of the cardiac Na+ channel, was significantly decreased in the mutant TMEM168-transfected HL-1 cells and the knock-in hearts. We found that the decrease was caused by the enhanced ubiquitination of Nav1.5, which was mediated by increased binding of Nedd4–2 E3 ubiquitin ligase to Nav1.5 in the knock-in hearts. Co-immunoprecipitation experiments demonstrated that overactivity of Nedd4–2 is a result of Tmem168 mutant-mediated sequestration of a chaperon protein αB-crystallin, a Nav1.5-binding molecule that interferes with the interaction of Nedd4–2 with Nav1.5. These findings reveal the molecular mechanism of TMEM168 R539Q mutation-induced fatal ventricular arrhythmias in BrS. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): JSPS Grants-in-aid for Scientific Research


1996 ◽  
Vol 271 (1) ◽  
pp. C347-C353 ◽  
Author(s):  
S. J. Wieland ◽  
Q. H. Gong ◽  
J. E. Fletcher ◽  
H. Rosenberg

Biopsies of human skeletal muscle were analyzed by an in vitro contracture test (IVCT) for responsiveness to a halothane challenge: noncontracting (nonresponsive; IVCT-) and contracting (IVCT+). A muscle biopsy that is IVCT+ indicates potential malignant hyperthermia (MH) susceptibility. Primary cultures were grown from portions of the skeletal muscle biopsies, and voltage-activated currents were measured by whole cell recording in the presence or absence of 2-5 microM intracellular arachidonic or oleic acids. In untreated IVCT- cells, Na+ currents were predominantly tetrodotoxin (TTX) insensitive, indicating that most of the current was carried through the embryonic SkM2 isoform of the Na+ channel. Inclusion of fatty acids in the recording pipette of IVCT- cells produced an increase in voltage-activated Na+ currents during 20 min of recording. Approximately 70% of currents in fatty acid-treated cells were TTX sensitive, indicating activation of the adult SkM1 isoform of the Na+ channel. In contrast to IVCT- cells, IVCT+ cells expressed Na+ currents that were predominantly TTX sensitive even in the absence of added fatty acid, thus showing a relatively large baseline functional expression of SkM1 channels. Addition of fatty acids to the recording pipette produced little further change in the magnitude or TTX sensitivity of the whole cell currents in IVCT+ cells, suggesting altered functional regulation of Na+ channels in MH muscle.


1979 ◽  
Vol 73 (1) ◽  
pp. 1-21 ◽  
Author(s):  
J Z Yeh

The interactions of 9-aminoacridine with ionic channels were studied in internally perfused squid axons. The kinetics of block of Na channels with 9-aminoacridine varies depending on the voltage-clamp pulses and the state of gating machinery of Na channels. In an axon with intact h gate, the block exhibits frequency- and voltage-dependent characteristics. However, in the pronase-perfused axon, the frequency-dependent block disappears, whereas the voltage-dependent block remains unchanged. A time-dependent decrease in Na currents indicative of direct block of Na channel by drug molecule follows a single exponential function with a time constant of 2.0 +/- 0.18 and 1.0 +/- 0.19 ms (at 10 degrees C and 80 m V) for 30 and 100 microM 9-aminoacridine, respectively. A steady-state block can be achieved during a single 8-ms depolarizing pulse when the h gate has been removed. The block in the h-gate intact axon can be achieved only with multiple conditioning pulses. The voltage-dependent block suggests that 9-aminoacridine binds to a site located halfway across the membrane with a dissociation constant of 62 microM at 0 m V. 9-Aminoacridine also blocks K channels, and the block is time- and voltage-dependent.


2011 ◽  
Vol 43 (3) ◽  
pp. 313-326 ◽  
Author(s):  
M. Spasojevic ◽  
L. Ribic-Zelenovic ◽  
A. Maricic

Cobalt and nickel powders of three different compositions: Ni0.8Co0.2, Ni0.55Co0.45 and Ni0.2Co0.8 were obtained by electrodeposition from an ammonium chloride-sulphate solution. It was shown that the microstructure and morphology of the powders depended on the deposition current density as well as on the bath composition. Amorphous powder of Ni0.8Co0.2 was obtained at the current density higher than 200 mA cm-2, but nanocrystalline powders having the same composition were obtained at current densities lower than 200 mAcm-2. The nanocrystalline powders with lower Ni contents (0.55 and 0.2) obtained at a current density ranging from 40 mA cm-2 to 450 mA cm-2 were solid solutions of two phases, FCC (?-Ni) and HCP (?-Co) ones. The increase of the HCP phase in the powder was a result of both the Co content increase in the powder and decrease of the deposition current density.


Sign in / Sign up

Export Citation Format

Share Document