scholarly journals Nonmodal gating of cardiac calcium channels as revealed by dihydropyridines.

1989 ◽  
Vol 93 (6) ◽  
pp. 1243-1273 ◽  
Author(s):  
A E Lacerda ◽  
A M Brown

The hypothesis that dihydropyridine (DHP)-sensitive calcium channels have three distinct modes of gating has been examined. The major prediction is that the relative frequencies among modes depend on DHP concentration while the kinetics within a mode do not. We tested this by studying whole-cell and single-channel calcium currents in neonatal rat and adult guinea pig cardiac myocytes in different concentrations of several DHPs. In the absence of DHPs calcium currents declined with time but the kinetics, which are the focus of this study, were unchanged. Open-time frequency distributions had insignificant numbers of prolonged openings and were well fit by single tau's. Agonist DHP stereoisomers produced concentration-dependent changes in whole-cell tail current tau's. The frequency distribution of single calcium channel current open times became biexponential and the tau's were concentration dependent. The average number of openings per trace of channels with customary open times increased with increases in DHP concentration. Latencies to first opening for the customary openings and for prolonged openings were shorter in the presence of DHPs. A second larger conductance is another important feature of DHP-bound single calcium channels. Thus DHPs not only caused prolonged openings; they produced numerous changes in the kinetics of customary openings and increased channel conductance. It follows that these effects of DHPs do not support the hypothesis of modal gating of calcium channels. The mode model is not the only model excluded by the results; models in which DHPs are allowed to act only or mainly on open states are excluded, as are models in which the effects are restricted to inactivated states. We suggest a different type of model in which cooperative binding of DHPs at two sites produces the essential changes in kinetics and conductance.

Endocrinology ◽  
2006 ◽  
Vol 147 (11) ◽  
pp. 5160-5169 ◽  
Author(s):  
Guido Michels ◽  
Fikret Er ◽  
Michael Eicks ◽  
Stefan Herzig ◽  
Uta C. Hoppe

In the cardiovascular system, T-type calcium channels play an important role for the intracellular calcium homeostasis and spontaneous pacemaker activity and are involved in the progression of structural heart diseases. Androgens influence the cardiovascular physiology and pathophysiology. However, their effect on native T-type calcium currents (ICa,T) remains unclear. To test the chronic effect of testosterone on the cardiac ICa,T, cultured neonatal rat ventricular cardiomyocytes were treated with testosterone (1 nm-10 μm) for 24–30 h. Current measurements were performed after testosterone washout to exclude any acute testosterone effects. Testosterone (100 nm) pretreatment significantly increased whole-cell ICa,T density from 1.26 ± 0.48 pA/pF (n = 8) to 5.06 ± 1.75 pA/pF (n = 7; P < 0.05) and accelerated beating rate. This was attributed to both increased expression levels of the pore-forming subunits Cav3.1 and Cav3.2 and increased T-type single-channel activity. On single-channel level, the increase of the ensemble average current by testosterone vs. time-matched controls was due to an increased availability (58.1 ± 4.2 vs. 21.5 ± 4.0%, P < 0.01) and open probability (2.78 ± 0.29 vs. 0.85 ± 0.23%, P < 0.01). Cotreatment with the selective testosterone receptor antagonist flutamide (10 μm) prevented these chronic testosterone-induced effects. Conversely, acute application of testosterone (10 μm) decreased T-type single-channel activity in testosterone pretreated cells by reducing the open probability (0.78 ± 0.13 vs. 2.91 ± 0.38%, P < 0.01), availability (23.6 ± 3.3 vs. 57.6 ± 4.5%, P < 0.01), and peak current (−20 ± 4 vs. −58 ± 4 fA, P < 0.01). Flutamide (10 μm) did not abolish the testosterone-induced acute block of T-type calcium channels. Our results indicate that long-term testosterone treatment increases, whereas acute testosterone decreases neonatal rat T-type calcium currents. These effects seem to be mediated by a genomic chronic stimulation and a nongenomic acute inhibitory action.


2003 ◽  
Vol 89 (1) ◽  
pp. 615-624 ◽  
Author(s):  
Randall K. Powers ◽  
Marc D. Binder

Voltage-dependent persistent inward currents are thought to make an important contribution to the input–output properties of α−motoneurons, influencing both the transfer of synaptic current to the soma and the effects of that current on repetitive discharge. Recent studies have paid particular attention to the contribution of L-type calcium channels, which are thought to be widely distributed on both the somatic and the dendritic membrane. However, the relative contribution of different channel subtypes as well as their somatodendritic distribution may vary among motoneurons of different species, developmental stages, and motoneuron pools. In this study, we have characterized persistent inward currents in juvenile (10- to 24-day-old) rat hypoglossal (HG) motoneurons. Whole-cell, voltage-clamp recordings were made from the somata of visualized rat HG motoneurons in 300-μm brain stem slices. Slow (10 s), triangular voltage-clamp commands from a holding potential of −70 to 0 mV and back elicited whole-cell currents that were dominated by outward, potassium currents, but often showed a region of negative slope resistance on the rising phase of the command. In the presence of potassium channel blockers (internal cesium and external 4-aminopyridine and tetraethylammonium), net inward currents were present on both the rising and falling phases of the voltage-clamp command. A portion of the inward current present on the ascending phase of the command was mediated by TTX-sensitive sodium channels, whereas calcium channels mediated the remainder of the current. We found roughly the same relative contributions of P-, N-, and L-type channels to the calcium currents recorded at the soma that had previously been found in neonatal rat HG motoneurons. In most cells, the somatic voltage thresholds for calcium current onset and offset were similar and the peak current was largest on the ascending phase of the clamp command. However, about one-third of the cells exhibited a substantial clockwise current hysteresis, i.e., inward currents were present at lower voltages on the descending phase of the clamp command. In the same cells, 1-s depolarizing voltage-clamp commands were followed by prolonged tail currents, consistent with a prominent contribution from dendritic channels. In contrast to previous reports on turtle and mouse motoneurons, blocking L-type calcium channels did not eliminate these presumed dendritic currents.


1990 ◽  
Vol 64 (1) ◽  
pp. 91-104 ◽  
Author(s):  
R. E. Fisher ◽  
R. Gray ◽  
D. Johnston

1. The properties of single voltage-gated calcium channels were investigated in acutely exposed CA3 and CA1 pyramidal neurons and granule cells of area dentata in the adult guinea pig hippocampal formation. 2. Guinea pig hippocampal slices were prepared in a conventional manner, then treated with proteolytic enzymes and gently shaken to expose the somata of the three cell types studied. Standard patch-clamp techniques were used to record current flow through calcium channels in cell-attached membrane patches with isotonic barium as the charge carrier. 3. Single-channel current amplitudes were measured at different membrane potentials. Single-channel current-voltage plots were constructed and single-channel slope conductances were found to fall into three classes. These were (approximately) 8, 14, and 25 pS, and were observed in all three cell types. 4. The three groups of channels differed from each other in voltage dependence of activation: from a holding potential of -80, the small-conductance channel began to activate at about -40 to -30 mV, the medium-conductance channel at about -20 mV, and the large-conductance channel at approximately 0 mV. 5. Ensemble averages of single-channel currents during voltage steps revealed differences in voltage-dependent inactivation. The small-conductance channel inactivated completely within approximately 50 ms during steps from -80 to -10 mV or more positive. Steps to less positive potentials resulted in less inactivation. The medium-conductance channel displayed variable inactivation during steps from -80 to 0 mV. Inactivation of this channel during a 160-ms step ranged from virtually zero to approximately 100%. The large-conductance channel displayed no significant inactivation during steps as long as 400 ms. 6. The large-conductance channel was strikingly affected by the dihydropyridine agonist Bay K8644 (0.5-2.0 microM), resulting in a high probability of channel opening, prolonged openings, and an apparent increase in the number of channels available for activation. The medium and small-conductance channels were not noticeably affected by the drug. 7. The large-conductance channel could be induced to open at very negative membrane potentials by holding the patch for several seconds at 20 or 30 mV and stepping to -30 or -40 mV. This process was enhanced by Bay K8644, resulting in prolonged openings at potentials as negative as -100 mV.(ABSTRACT TRUNCATED AT 400 WORDS)


2018 ◽  
Vol 19 (10) ◽  
pp. 2941 ◽  
Author(s):  
Riko Koyama ◽  
Tiphaine Mannic ◽  
Jumpei Ito ◽  
Laurence Amar ◽  
Maria-Christina Zennaro ◽  
...  

Activation of the mineralocorticoid receptor (MR) in the heart is considered to be a cardiovascular risk factor. MR activation leads to heart hypertrophy and arrhythmia. In ventricular cardiomyocytes, aldosterone induces a profound remodeling of ion channel expression, in particular, an increase in the expression and activity of T-type voltage-gated calcium channels (T-channels). The molecular mechanisms immediately downstream from MR activation, which lead to the increased expression of T-channels and, consecutively, to an acceleration of spontaneous cell contractions in vitro, remain poorly investigated. Here, we investigated the putative role of a specific microRNA in linking MR activation to the regulation of T-channel expression and cardiomyocyte beating frequency. A screening assay identified microRNA 204 (miR-204) as one of the major upregulated microRNAs after aldosterone stimulation of isolated neonatal rat cardiomyocytes. Aldosterone significantly increased the level of miR-204, an effect blocked by the MR antagonist spironolactone. When miR-204 was overexpressed in isolated cardiomyocytes, their spontaneous beating frequency was significantly increased after 24 h, like upon aldosterone stimulation, and messenger RNAs coding T-channels (CaV3.1 and CaV3.2) were increased. Concomitantly, T-type calcium currents were significantly increased upon miR-204 overexpression. Specifically repressing the expression of miR-204 abolished the aldosterone-induced increase of CaV3.1 and CaV3.2 mRNAs, as well as T-type calcium currents. Finally, aldosterone and miR-204 overexpression were found to reduce REST-NRSF, a known transcriptional repressor of CaV3.2 T-type calcium channels. Our study thus strongly suggests that miR-204 expression stimulated by aldosterone promotes the expression of T-channels in isolated rat ventricular cardiomyocytes, and therefore, increases the frequency of the cell spontaneous contractions, presumably through the inhibition of REST-NRSF protein.


1990 ◽  
Vol 153 (1) ◽  
pp. 129-140 ◽  
Author(s):  
T. P. FENG ◽  
ZHENG-SHAN DAI

Although the entry of calcium ions into the presynaptic nerve terminals through voltage-gated Ca2+ channels is now universally recognized as playing an essential role in evoked transmitter release at the neuromuscular junction (NMJ), and indeed in chemical synapses generally, we have as yet very little direct knowledge of the Ca2+ channels of the presynaptic terminals. In this work, making use of cocultured nerve and muscle cells from Xenopus embryos, we studied the NMJ formed between the soma of identified cholinergic neurones and myoball, which allowed the use of patch-clamps on both the pre- and postsynaptic components. Both whole-cell and single-channel recordings of Ca2+ channels in the presynaptic cell were made. We found only one type of voltage-gated Ca2+ channel with highvoltage activation and slow inactivation characteristics, allowing its classification either as the L or the N type. The channels were susceptible to block by metenkephalin but not to block by nifedipine or to enhancement by Bay K 8644. This combination of pharmacological properties favours their classification as the N type. Preliminary observations on the correlation between calcium currents and transmitter release disclosed a strikingly rapid run-down of the evoked release with unchanged calcium currents and spontaneous release during whole-cell recording, indicating a specific wash-out effect on some link between calcium entry and evoked transmitter release.


1994 ◽  
Vol 302 (1) ◽  
pp. 147-154 ◽  
Author(s):  
E J Nelson ◽  
C C R Li ◽  
R Bangalore ◽  
T Benson ◽  
R S Kass ◽  
...  

Thapsigargin (TG), 2,5-t-butylhydroquinone (tBHQ) and cyclopiazonic acid (CPA) all inhibit the initial Ca(2+)-response to thyrotropin-releasing hormone (TRH) by depleting intracellular Ca2+ pools sensitive to inositol 1,4,5-trisphosphate (IP3). Treatment of GH3 pituitary cells for 30 min with 5 nM TG, 500 nM tBHQ or 50 nM CPA completely eliminated the TRH-induced spike in intracellular free Ca2+ ([Ca2+]i). Higher concentrations of TG and tBHQ, but not CPA, were also found to inhibit strongly the activity of L-type calcium channels, as measured by the increase in [Ca2+]i or 45Ca2+ influx stimulated by depolarization. TG and tBHQ blocked high-K(+)-stimulated 45Ca2+ uptake, with IC50 values of 10 and 1 microM respectively. Maximal inhibition of L-channel activity was achieved 15-30 min after drug addition. Inhibition by tBHQ was reversible, whereas inhibition by TG was not. TG and CPA did not affect spontaneous [Ca2+]i oscillations when tested at concentrations adequate to deplete the IP3-sensitive Ca2+ pool. However, 20 microM TG and 10 microM tBHQ blocked [Ca2+]i oscillations completely. The effect of drugs on calcium currents was measured directly by using the patch-clamp technique. When added to the external bath, 10 microM CPA caused a sustained increase in the calcium-channel current amplitude over 8 min, 10 microM tBHQ caused a progressive inhibition, and 10 microM TG caused an enhancement followed by a sustained block of the calcium current over 8 min. In summary, CPA depletes IP3-sensitive Ca2+ stores and does not inhibit voltage-operated calcium channels. At sufficiently low concentrations, TG depletes IP3-sensitive stores without inhibiting L-channel activity, but, for tBHQ, inhibition of calcium channels occurs at concentrations close to those needed to block agonist mobilization of intracellular Ca2+.


1988 ◽  
Vol 254 (6) ◽  
pp. H1200-H1205 ◽  
Author(s):  
G. E. Kirsch ◽  
A. Yatani ◽  
J. Codina ◽  
L. Birnbaumer ◽  
A. M. Brown

A specific guanine nucleotide-binding protein, Gk, is the link by which muscarinic receptors activate atrial potassium channels (Science Wash. DC 235: 207-211, 1987). In adult guinea pigs, the alpha-subunit at picomolar concentrations mediates the holo-G protein effect (Science Wash. DC 236: 442-445, 1987), but in chick embryo it has been reported that the beta gamma-dimer at nanomolar concentrations rather than the alpha-subunit is the effective mediator (Nature Lond. 325: 321-326, 1987). This difference might have a phylogenetic or ontogenetic basis, and the present experiments tested these possibilities. Preactivated alpha k derived from human red blood cell Gk, when applied to the intracellular surface of inside-out membrane patches from the atria of embryonic chick, neonatal rat, and adult guinea pig activated single K+ channel currents. In each case, the alpha k-activated channels had the same single-channel conductance and mean open time as the muscarinic agonist-activated channels. Half-maximal activation was achieved at alpha k-concentrations of 2.4-13.8 pM. Hence, alpha k-activation of these K+ channels is independent of differences in age or species. The detergent 3-[3-cholamidopropyl)-dimethyammoniol]-1-propanesulfonate (CHAPS), which was used by Logothetis et al. (Nature Lond. 325: 321-326, 1987) at 184 microM to suspend the hydrophobic beta gamma-dimers, activated the same currents. We conclude that the effects of the beta gamma-dimer on these K+ channels is unknown and that as we had proposed earlier (Science Wash. DC 236: 442-445, 1987) it is the alpha-subunit that mediates the Gk effect.


1994 ◽  
Vol 266 (2) ◽  
pp. C391-C396 ◽  
Author(s):  
R. Bull ◽  
J. J. Marengo

The effect of halothane on calcium channels present in sarcoplasmic reticulum membranes isolated from frog skeletal muscle was studied at the single channel level after fusing the isolated vesicles into planar lipid bilayers. Addition of 91 microM halothane to the cytosolic compartment containing 1 microM free calcium activated the channel by increasing fractional open time from 0.11 to 0.59, without changing the channel conductance. The activation of the channels by halothane was calcium dependent. At resting calcium concentrations in the cytosolic compartment, halothane failed to activate the channel, whereas maximal activation was found at 10 microM calcium. The free energy of halothane binding to the channel decreased from -5.8 kcal/mol at 1 microM calcium to -6.6 kcal/mol at 10 microM calcium. Halothane increased the open time constants and decreased the closed time constants, indicating that it binds to both the open and the closed configurations of the channel.


2017 ◽  
Vol 149 (3) ◽  
pp. 355-372 ◽  
Author(s):  
Jingyao Zhang ◽  
Tzyh-Chang Hwang

Cystic fibrosis transmembrane conductance regulator (CFTR) is an ion channel that couples adenosine triphosphate (ATP) hydrolysis at its nucleotide-binding domains to gating transitions in its transmembrane domains. We previously reported that the charge-neutralized mutant R352C shows two distinct open states, O1 and O2. The two states could be distinguished by their single-channel current amplitudes: O1 having a smaller amplitude (representing a prehydrolytic open state) and O2 having a larger amplitude (representing a post-hydrolytic open state). In this study, a similar phenotype is described for two mutations of another pore-lining residue, N306D and N306E, suggesting that alterations of the net charge within CFTR’s pore confer this unique conductance aberration. Because moving either of the two endogenous charges, R303 and R352, to positions further along TM5 and TM6, respectively, also results in this O1O2 phenotype, we conclude that the position of the charged residue in the internal vestibule affects hydrolysis-dependent conductance changes. Furthermore, our data show that the buffer and CFTR blocker morpholino propane sulfonic acid (MOPS−) occludes the O1 state more than it does the O2 state when the net charge of the internal vestibule is unchanged or increased. In contrast, when the net charge in the internal vestibule is decreased, the differential sensitivity to MOPS− block is diminished. We propose a three-state blocking mechanism to explain the charge-dependent sensitivity of prehydrolytic and post-hydrolytic open states to MOPS− block. We further posit that the internal vestibule expands during the O1 to O2 transition so that mutation-induced electrostatic perturbations within the pore are amplified by the smaller internal vestibule of the O1 state and thus result in the O1O2 phenotype and the charge-dependent sensitivity of the two open states to MOPS− block. Our study not only relates the O1O2 phenotype to the charge distribution in CFTR’s internal vestibule but also provides a toolbox for mechanistic studies of CFTR gating by ATP hydrolysis.


1995 ◽  
Vol 105 (2) ◽  
pp. 227-247 ◽  
Author(s):  
R T Dirksen ◽  
K G Beam

The purpose of this study was to use whole-cell and cell-attached patches of cultured skeletal muscle myotubes to study the macroscopic and unitary behavior of voltage-dependent calcium channels under similar conditions. With 110 mM BaCl2 as the charge carrier, two types of calcium channels with markedly different single-channel and macroscopic properties were found. One class was DHP-insensitive, had a single-channel conductance of approximately 9 pS, yielded ensembles that displayed an activation threshold near -40 mV, and activated and inactivated rapidly in a voltage-dependent manner (T current). The second class could only be well resolved in the presence of the DHP agonist Bay K 8644 (5 microM) and had a single-channel conductance of approximately 14 pS (L current). The 14-pS channel produced ensembles exhibiting a threshold of approximately -10 mV that activated slowly (tau act approximately 20 ms) and displayed little inactivation. Moreover, the DHP antagonist, (+)-PN 200-110 (10 microM), greatly increased the percentage of null sweeps seen with the 14-pS channel. The open probability versus voltage relationship of the 14-pS channel was fitted by a Boltzmann distribution with a VP0.5 = 6.2 mV and kp = 5.3 mV. L current recorded from whole-cell experiments in the presence of 110 mM BaCl2 + 5 microM Bay K 8644 displayed similar time- and voltage-dependent properties as ensembles of the 14-pS channel. Thus, these data are the first comparison under similar conditions of the single-channel and macroscopic properties of T current and L current in native skeletal muscle, and identify the 9- and 14-pS channels as the single-channel correlates of T current and L current, respectively.


Sign in / Sign up

Export Citation Format

Share Document